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ABSTRACT

Owing to the increasing acceptance of cryptocurrencies, there has

been widespread adoption of traditional �nancial applications such

as lending, borrowing, margin trading, andmore, into the cryptocur-

rency realm. In some cases, the inherently transparent and unregu-

lated nature of cryptocurrencies exposes users of these applications

to attacks. One such attack is frontrunning, where a malicious entity

leverages the knowledge of currently unprocessed �nancial trans-

actions and attempts to get its own transaction(s) executed ahead

of the unprocessed ones. The consequences of this can be �nancial

loss, inaccurate transactions, and even exposure to more attacks.

We propose FIRST, a framework that prevents frontrunning, and as

a secondary e�ect, also backrunning and sandwich attacks. FIRST

is built using cryptographic protocols including veri�able delay

functions and aggregate signatures. We formally prove the secu-

rity of FIRST using the universal composability framework, and

experimentally demonstrate its e�ectiveness using Ethereum and

Binance Smart Chain blockchain data. We show that with FIRST,

the probability of frontrunning is approximately 0.00004 (or 0.004%)

on Ethereum and 0% on Binance Smart Chain, making it e�ectively

near zero.
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1 INTRODUCTION

The decentralized, trustless, and censor-resistant nature of Ethereum,

along with its support for smart contracts, has enabled a wide range

of �nancial applications and has created the Decentralized Finance

(DeFi) ecosystem, which is worth more than 75 billion USD as of

December 2024 [2]. With the recent developments, many real-world

�nancial products such as money lending and borrowing, margin

trading, exchange platforms, derivatives and more, are being made

available to the blockchain users via smart contracts [1, 11, 38].
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Figure 1: Steps involved in a frontrunning attack.

Unfortunately, the absence of regulations allows malicious actors

to adopt and employ dubious practices from traditional �nance

within the cryptocurrency ecosystem.

In �nance, frontrunning is an act of purchasing stock or other

securities right before a large (whale) transaction owing to access

to non-public information. By doing so, one can take advantage

of the outcomes of large unprocessed transactions to be executed

after a later time than one’s own. Frontrunning has been classi�ed

as illegal by monitoring entities, such as the U.S. Securities and Ex-

change Commission (SEC) and principally prevented by extensive

regulations [28]. In permissionless chains such as Ethereum, trans-

actions that do not utilize private relayers like Flashbots [30] or

directly interact with validators to obscure their details are publicly

visible in the pending pool (or mempool) before being processed.

This visibility allows adversaries, such as Mallory, to monitor the

peer-to-peer (P2P) network for potentially exploitable transactions.

For example, when an honest user, Alice, submits a transaction CG�
with a gas price of �� , Mallory can craft a competing transaction

CG" with a higher gas price �" , where �" > �� , ensuring CG"
is prioritized and included in the next block before CG� . Figure 1

illustrates a typical frontrunning attack.

Examples of frontrunning attacks can be seen on various de-

centralized applications (dApps). The �rst and most prominent

attack vector is on decentralized exchanges (DEXes). DEXes are

exchange platforms built on smart contracts that enable users to

exchange assets without the need for an intermediary [32]. Unlike

centralized exchanges, where users wait for their buy/sell orders

to be ful�lled, most DEXes—e.g., Uniswap [38]—use an automatic

pricing mechanism known as an Automated Market Maker (AMM)

to perform instant trades. A frontrunner can perform attacks with

highly predictable results due to deterministic pricing mechanism

as well as the transparency of liquidity amounts of decentralized ex-

changes. In this context, Qin et al. estimated a pro�t of 1.51 Million

USD made by frontrunners [32]. Other domains that are a�ected

by frontrunning attacks include (but are not limited to) gambling

[22], bug bounty programs [16], smart contract exploits [37], and

clogging [32], which emphasizes the threat and the need for miti-

gation. In this work, we aim to mitigate frontrunning attacks on

blockchains that support smart contracts such as Ethereum, but

without modifying the blockchain’s underlying infrastructure. The

core idea behind FIRST is to prevent Mallory from frontrunning

Alice’s transaction, CG� , with her own transaction, CG" , by ensuring
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that CG� is included in the block before CG" . We introduce a novel

approach to achieve this by leveraging Veri�able Delay Functions

(VDFs) to impose a delay on CG" [13]. Speci�cally, FIRST requires

Mallory’s transaction to wait for a predetermined amount of time,

during which the VDF is evaluated, before it can interact with the

dApp implementing the frontrunning protection. Once Mallory

completes the VDF evaluation, she generates a proof that is then

veri�ed by a set of veri�ers. Transactions that fail to be veri�ed by

the veri�ers are rejected from calling the smart contract function.

Importantly, FIRST is not limited to a speci�c application and

can be employed by various dApps, such as auctions, decentralized

name services, NFT marketplaces, and others that are susceptible

to frontrunning attacks. FIRST helps protect users from frontrun-

ning and backrunning attacks, and consequently from sandwich

attacks as well [44]. FIRST operates entirely at the application layer,

requiring no changes to the underlying blockchain or its consensus

protocol, thus requiring no changes to the blockchain framework.

The speci�c FIRST transactions require an additional amount of

veri�cation by the validators (miners), which is incentivized by the

framework to ensure the transactions are picked up to be veri�ed

and added to the chain.

Our novel contributions are as follows: a) We propose Fron-

trunnIng Resistant Smart ConTracts (FIRST), a general-purpose so-

lution to the frontrunning problem using cryptographic protocols,

such as VDFs and aggregate signatures [15]. FIRST signi�cantly

curtails frontrunning attacks in EVM-based blockchains while re-

quiring no changes to the underlying blockchain infrastructure.

As an application-agnostic solution, FIRST can be easily adopted

by any dApp. b) We discuss the e�ectiveness of FIRST and ex-

perimentally evaluate it using Ethereum and Binance Smart Chain

transaction data. c)We rigorously prove the security of FIRST using

the Universal Composability (UC) framework.

Paper Organization: In Section 2, we provide a concise explana-

tion of relevant preliminary concepts. Section 3 presents the system

model and threat model. In Section 4, we detail the construction

of FIRST and its constituent protocols. Section 5 o�ers a compre-

hensive security analysis of FIRST. In Section 6, we elaborate on

the implementation and evaluation of our system. We discuss the

design choices and limitations of FIRST in Section 7. We review

related literature in Section 8 and conclude the paper in Section 9.

2 PRELIMINARIES

2.1 Ethereum and DeFi

Bitcoin demonstrated blockchain technology’s potential by en-

abling direct transactions between untrusted parties without a

central authority. Ethereum expanded on this by introducing smart

contracts—self-executing programs on the blockchain that activate

when prede�ned conditions are met. Developed using languages

such as Solidity or Vyper, these transparent smart contracts have

led to the creation of dApps. Finance-related dApps have enabled

DeFi, which is an umbrella term that includes various �nancial

products (such as �ash loans, asset management services, decen-

tralized derivatives, and insurance services) available to any user

with an internet connection in a decentralized manner [3, 10]. It

allows users to utilize �nancial products at any time. Additionally,

DeFi products enable end-users to employ them in a non-custodial

fashion, giving users complete control over their money, as opposed

to traditional �nancial services based on a custodial model.

2.2 Cryptographic Preliminaries

Veri�able Delay Function: A Veri�able Delay Function (VDF)

is a deterministic function 5 : - → . requiring a �xed num-

ber of sequential steps, ) , to compute, with e�cient public ver-

i�cation [13]. While time-lock puzzles [21, 34] also enforce ) se-

quential steps, they lack public veri�ability and focus on encryp-

tion, making them unsuitable for applications like FIRST, where

proof of elapsed time is essential. Recent VDF constructions by

Pietrzak and Wesolowski [31, 42] address these limitations. We

adopt Wesolowski’s VDF [42] for its shorter proofs and faster veri-

�cation. For a detailed comparison of these schemes, see [14], and

for the formal de�nition, refer to Appendix A.

Aggregate Signatures: An aggregate signature scheme allows the

aggregation of = distinct signatures from = users, each on a distinct

message of their choice, into a single signature [15]. Moreover,

it allows the aggregation to be done by any party among the =

users, including a potentially malicious party. By verifying the

aggregate signature, one can be convinced that = distinct users

have signed = distinct messages, which have been collected into

a single signature. FIRST utilizes this cryptographic primitive to

aggregate the veri�cation results of a VDF proof.

3 SYSTEM AND THREAT MODEL

3.1 System Model

Parties: In our system, there exist four main entities. 1) A smart

contract SC that resides on the Ethereum blockchain. 2) Alice, who

is a legitimate user interacting with SC by creating a transaction

CG� that is potentially vulnerable to frontrunning attacks. Alice is

equipped with a veri�cation/signing keypair (?:�, B:�). She eval-

uates a VDF instance, V , given to her by a set of veri�ers. 3) A

set of veri�ers V who generate and send the public parameters

of the VDF,V , to Alice and verify the evaluatedV and its proof

of correctness that Alice submits to them. A coordinator C, is an

entity picked from the members of V by Alice to help aggregate

their signatures into a single signature. 4) Validators, whose goal

is to construct blocks and propose them to the network, validate

potential blocks received from other nodes, and process transac-

tions. Finally, dApp creator (dAC), who implements applications

such as auctions, exchanges, bug bounty programs, and Initial Coin

O�erings (ICOs) which are known to be targeted by frontrunning

attacks.

3.2 Threat Model and Assumptions

Mallory: We assume Mallory is an adversary who is computa-

tionally bounded and economically rational. Mallory is observing

the pending transaction pool for Alice’s transaction, CG� on the

Ethereum network. Mallory will attempt a frontrunning attack as

soon as she observes CG� on the pending pool by paying a higher

priority fee. We also take into account the case where more than

one adversary attempts to frontrun CG� . For ease of exposition, we

use Mallory to represent a group of adversaries.

Veri�ers: Veri�ers V are a set of entities not controlled nor owned
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by the dAC. The protocol in its current version relies on the as-

sumption of an honest majority among veri�ers to guarantee the

system’s proper functionality. The trust assumption in the veri�ers

ensures that transactions are not subjected to unnecessary delays

from the malicious veri�ers, thereby maintaining the liveness prop-

erty. In FIRST, veri�ers do not have access to client details during

V veri�cation, e�ectively precluding transaction censorship.

While we acknowledge the trust assumption in this version,

FIRST is designed with an intuitive plug-and-play framework that

seamlessly integrates projects like Eigenlayer. This integration

aims to minimize trust dependencies and align with Ethereum’s

renowned fault tolerance [36]. Eigenlayer o�ers Ethereum val-

idators the opportunity to restake their ETH, thereby extending

Ethereum’s security to additional protocols. Just as with Ethereum’s

PoS system, any lapse in ensuring protocol security results in a

corresponding slash of their stakes. Furthermore, we consider sce-

narios where a subset of malicious veri�ers might attempt to leak

transaction details to Mallory, and demonstrate how FIRST prevents

such occurrences in Section 5.

Validators: We assume that the validators are greedy—they sort

transactions in descending order of priority fee and pick them in

an order that maximizes their pro�t. It is important to note that

in FIRST, veri�ers do not have access to client details during V

veri�cation, e�ectively preventing transaction censorship. They

can also re-order transactions to increase their pro�t and attempt

to frontrun victim transactions.

Coordinator: The coordinator is randomly chosen by Alice from a

set of veri�ers V. It’s important to emphasize that while this entity

doesn’t need to be trusted for security purposes, it is essential for

ensuring liveness. We assume Alice actively monitors the trans-

action process. If any intentional delays are detected, Alice will

re-elect a coordinator and continue her interactions with the new

entity.

dApp Creator: We assume dAC will deploy (� and implement

it correctly. We also assume that dAC does not collude with any

other participant or with validators as it is in their best interest to

protect their dApp for business reasons. Furthermore, the inherent

transparency of smart contract code, which is accessible to the

public, acts as a safeguard against malicious intent. Moreover, we

assume that dAC has both completed the Know-Your-Customer

(KYC) process and undergone an audit for the protocol, providing

an added layer of deterrence against malicious attempts. While

KYC veri�cation is predominantly utilized in centralized services,

there are companies like that o�er this service for dApps [35]. KYC

veri�cation ensures that in the event of any malicious actions by

dAC, the real-world entity behind it can be easily identi�ed, thereby

enhancing the deterrent e�ect against potential malicious activities.

We do not discuss networking-related attacks as they are out of

the scope of this work; we refer the reader to relevant research [29].

4 THE FIRST FRAMEWORK

4.1 Overview of FIRST

The conceptual idea behind FIRST is to prevent Mallory (an at-

tacker) from frontrunning Alice’s transaction by ensuring that Mal-

lory’s transaction cannot reach the smart contract before Alice’s is

posted. To achieve this, FIRST requires every user interacting with

a FIRST-protected contract to compute a veri�able delay and wait

independently for a predetermined time C1 before submitting their

transaction to the mempool. Importantly, FIRST does not impose

a global ordering or queue across users; each user’s delay is en-

forced individually. This mechanism guarantees that no transaction

becomes visible to adversaries until after the VDF commitment is

ful�lled.

The goal is to choose C1 for a given time period/epoch, s.t. C1 >>

C2, where C2 is the expected wait time of the transaction of any

Alice in the mempool before getting posted on the Blockchain. This

ensures that, with high probability, Mallory cannot frontrun Alice’s

transaction that she sees in the mempool. The time C2 depends

on several dynamic factors, namely transaction gas price, priority

fee, miner extractable value (MEV), and network congestion at the

time of submission, which makes an exact assessment of C2 di�cult.

Since the expected value of C2 is the best can be done, there is a

chance of C1 being less than the actual waiting time for Alice’s

transactions. Given that C2 is di�cult to predict, and a high C1 is

detrimental to transaction throughput due to latency, what we do is

empirically arrive at a “reasonable” value for C1. FIRST continuously

monitors the blockchain data to identify the minimum priority fee

value that would result in a high likelihood of all FIRST transactions

waiting approximately C2 time in the mempool. The C1 wait time

is then �xed for a given epoch (higher than C2), ensuring that a

potential attack transaction has very low probability to frontrun

valid FIRST transactions. For our application of FIRST in Ethereum,

we set this epoch to be the same as the default Ethereum epoch of

32 blocks. The dAC obtains the value of C1 via statistical analysis

of the relation between the priority fee of the transaction and

transaction con�rmation time bymonitoring the Ethereum network

continuously. Consequently, FIRST recommends an optimal priority

fee that signi�cantly decreases the likelihood of transactions getting

frontrun. We detail how we perform such a statistical analysis in

Section 6.

4.2 Construction of FIRST

This section outlines the key components of FIRST, illustrated in

Figure 2, which consists of seven protocols. Steps 1–2 correspond

to the deployment of the smart contract on the blockchain and

the registration of veri�ers with the dApp owner. After registra-

tion, each veri�er independently generates a key pair. These steps

constitute the bootstrap phase of the system (Protocols 1 and 2).

Steps 3–4 represent the initialization of a transaction by Alice. She

prepares the transaction details and requests a VDF challenge from

the veri�er set (Protocol 4). Step 5 shows the veri�ers responding

with a unique VDF challenge—a prime ;—which Alice must use to

compute the VDF (Protocol 6). Steps 6–8 cover the VDF evaluation

and veri�cation phase (Protocol 5). Alice computes the VDF output

o�chain and sends the proof to the veri�ers, who verify its correct-

ness and sign the result. Step 9 corresponds to Alice submitting her

transaction, along with the signed proof, to the smart contract on

Blockchain (Protocol 7). The contract then veri�es both the signa-

ture and VDF proof before executing the transaction onchain. For

simplicity, the computation of the recommended transaction tip,

FIRST_FEE, described in Protocol 3, is not visualized in the �gure,

but it is applied before the �nal transaction submission.
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Figure 2: Overview of FIRST.

We use Sign and Verify with no pre-pended string to denote

regular digital signature functions, whereas Agg.function() denotes

functions speci�c to the aggregate signature scheme. We use Verify

for both, signature and VDF veri�cation, which will be clear from

context. Below we discuss each protocol.

Protocol 1: This is the bootstrap protocol of FIRST, and is exe-

cuted only once. It takes a security parameter as input and outputs

the smart contract (� and veri�cation/signing keypairs for each

member of V. First, the dAC implements and deploys the dApp

on Ethereum. Entities sign up with the dAC to become veri�ers.

Following deployment, each member of V generates their key pairs.

We note that← denotes an assignment operation.

Protocol 2: The protocol is used to generate the system parameters

of FIRST. It takes in a security parameter and outputs the public

parameters (??) of VDF V . In Line 1, each +8 ∈ V initializes its

list �8 and *8 , used to keep track of values used in the VDF V’s

evaluation and veri�cation, respectively. In Line 2, the dApp cre-

ator dAC initializes the number of steps ) that will be used in the

evaluation ofV . ) is the number of steps required to evaluate the

VDF instance which results in a corresponding delay of C1 units of

time. Next, dAC samples a negative prime integer 3 , which satis�es

3 ≡ 1 (mod 4). These requirements ensure that when generating

the class group (Cl) from 3 in Line 4, the resulting class group order

cannot be e�ciently computed by any known algorithm [19, 42].

Currently, two approaches are known for setting upV: using

an RSA group of unknown order and using class groups of imagi-

nary quadratic �elds [42] whose order is hard to determine. The

Protocol 1: System setup.

Inputs :Security parameter _.

Output :SC, (?:, B:) keypair for each member of V.

Parties :dApp creator (dAC), set of veri�ers (V).

1 dAC implements SC and deploys it on Ethereum.

2 Each +8 ; 8 ∈ [1 . . . =] generates

(?:8 , B:8 ) ← Agg.KeyGen(1_).

Protocol 2: Parameter generation.

Inputs :Security parameter _.

Output :?? .

Parties :dApp creator (dAC), set of veri�ers (V).

1 Each +8 ∈ V, initializes lists �8 ,*8 = [ ].

2 dAC picks ) ∈ Z+.

3 dAC←$ 3 , s.t., 3 is negative prime and 3 ≡ 1 (mod 4).

4 dAC computes G← Cl(3) and output ?? = (G,) )

RSA group approach requires a trusted setup when generating #

such that # = ?.@ where ? and @ are primes; in particular, ? and @

need to be kept secret. On the other hand, a class group of imagi-

nary quadratic �elds does not require a trusted setup and is used

by blockchains such as the Chia network in production [19]. We

use such groups to eliminate the trusted setup requirement in our

construction.

Protocol 3: The goal of FIRST is to provide users with frontrun-

ning resistant transactions. To achieve this, we introduce a novel

mechanism for computing a custom recommended fee, denoted as

FIRST_FEE. Without FIRST_FEE, users would have to rely blindly

on wallet or Etherscan-suggested priority fees or manually esti-

mate gas prices, exposing them to potential delay in transaction

inclusion, which increases their vulnerability to frontrunning or

may lead to unnecessary overpayment. The FIRST_FEE helps in-

centivize faster pickup of the FIRST transactions, thus ensuring

their faster con�rmation and lower latency. This protocol continu-

ously monitors blockchain transactions to analyze transaction wait

times and the associated priority fees paid, in order to calculate the

FIRST_FEE. The U value passed as input to the protocol corresponds

to the weight of simple Exponentially Weighted Moving Average

(EWMA) calculation for FIRST_FEE inside the CalcFIRSTFee func-

tion.

The value of C1 in Protocol 3 corresponds to the ) value set in

Line 2 of Protocol 2.) is the estimated number of steps required by a

powerful machine (e.g. onewith amodern desktop CPU) to compute

a VDF proof with C1 delay. Most other less capable machines will

take longer than C1 to compute the VDF. For each new block posted

on the blockchain, Protocol 3 calculates the average fee (50E6) paid

by transactions which waited less than C2 time in the mempool

before being posted in the blockchain. The average value calculated

in the previous step is then incorporated into the FIRST_FEE value

using EWMA. The FIRST protocol enables the forceful change of an

epoch if the C2 value needs to be updated before the current epoch

ends. For instance, when the number of transactions in the current

block waiting less than C2 time are statistically insigni�cant or cross

a prede�ned system threshold (in Protocol 3, C4<?;8BC == ∅) we

initiate epoch change, and update the C2 and C1 values based on

the average waiting time across a set number of recent past blocks,

which can be a system parameter (10 blocks in our experiments).

We note that during the shift from a longer to a shorter delay

period (t1), FIRST momentarily halts transaction submissions. This

precaution maintains fairness between transactions with varying

VDF delays during the transition (C1 to C
′
1), safeguarding transac-

tions with extended VDF delays from being outpaced by those

with shorter ones. The pause ensures that all users who started

4



Protocol 3: FIRST recommended priority fee calc.

Inputs : Initial C2, U , and : (multiplication factor for C1).

Output :Recommended priority fee.

Parties :dApp creator (dAC).

1 function CalcFIRSTFee(FIRST_FEE,CG;8BC):

2 C4<?;8BC = [ ].

3 for CG in CG;8BC do

4 if CGF08C_C8<4 < C2 then

5 C4<?;8BC .0??4=3 (CG?A8>A8C~_5 44 ).

6 end

7 end

8 if C4<?;8BC == ∅ then

/* re-calibrate C2 & C1. */

9 Initiate epoch change.

10 return

11 end

12 50E6 = average(C4<?;8BC ).

13 if FIRST_FEE == 0 then

14 FIRST_FEE = 50E6 .

15 end

16 else

17 FIRST_FEE = U × 50E6 + (1 − U) × FIRST_FEE.

18 end

19 function main():

2020 FIRST_FEE = 0.

2121 C1 = : × C2.

2222 while True do

2323 if New block with CG;8BC transactions is posted on BC

then

2424 CalcFIRSTFee(FIRST_FEE, CG;8BC ).

2525 if Current epoch ended then

2626 Update C2 if needed, set C1 = : × C2 and

update ) to correspond C1.
27 end

28 end

29 end

Protocol 4: Transaction detail generation.

Inputs :033A�, 5name, 033A(� .

Output :Secret message M� , ℎ, Signature f� .

Parties : set of veri�ers (V), user in system (Alice).

1 Alice generates message

M� = (033A�, 5name, 033A(� , 8=?DC(� ) .

2 Alice generates hash of M� , ℎ = � (M�), and signs it:

f� ← Sign(B:�, ℎ) .

3 Alice sends (ℎ, f�) to each +8 ; 8 ∈ [1 . . . =], = = |V|,

including the +8 she picks as the coordinator C for

signature aggregation.

their transaction setup under the old C1 �nish their VDF evaluation

correctly before the new C ′1 becomes active. Without a pause, ad-

versarial users could strategically delay their transaction request

Protocol 5: User-Veri�ers interaction.

Inputs :f�, ℎ, ?? .

Output :VDF output y, VDF proof c .

Parties :user in system (Alice), set of veri�ers (V) including

coordinator C.

1 On receiving (f�, ℎ) from Alice, C ∈ V picks prime ; ←$ P

and sends (ℎ, ;) to V \ C.

2 for each +8 ∈ V do

3 if ; ∉ �8 and ; ∉ *8 then

4 if true← Verify(?:�, ℎ, f�) then

5 M8 = (;, ℎ,+8 , 1;>2:2DAA ).

6 f+ğ ← Agg.Sign(B:+ğ ,M8 ).

7 Add (;) to �8 .

8 Send ("8 , f+ğ ) to C.

9 end

10 end

11 end

/* Sig. aggregation and evaluate V */

12 C checks if each Agg.Verify(?:8 ,M8 , f+ğ )
?
= true. If majority

of members of V return §, C returns § to Alice. Else C

does fagg← Agg.Aggregate("1, . . . , " 9 , f+1
, . . . , f+Ġ

),

where 9 > |V|/2.

13 C creates Magg = (fagg, "1, . . . , " 9 , ?:1 . . . ?: 9 ) and sends

Magg to Alice.

14 Alice checks if

Agg.AggregateVerification(fagg, "1, . . . , " 9 , ?:1, . . . , ?: 9 )
?
= true, and if Verify(?:8 , ??, f??ğ )

?
= true where

8 ∈ {1 . . . 9}, and 9 > |V|/2. If both return yes, Alice

computes (c,~) ← V .Eval(??, ;). Else returns § and retry.

15 Alice sends (c, y) to all members of V.

to fall after the adoption of C ′1 to bene�t from the reduced delay

parameter, which violates fairness guarantees.

Protocol 4: This protocol is used to generate transaction details

of FIRST’s users. It takes as input Alice’s transaction details and

outputs a message, its digest and a signature over the digest; the

latter two are meant to be given toV. In Line 1, user Alice constructs

a tuple, M� , with the transaction details, including her Ethereum

address 033A� , the dApp smart contract address that she intends

to submit a transaction to, 033A(� (that dAC created), and the

name of the function that she intends to invoke to trigger the

smart contract (� , 5name. We assume she has a veri�cation/signing

keypair (?:�, B:�), using which, in Line 2, she creates and signs

a digest of M� . Using the cryptographic hash of the transaction

details prevents the leakage of any detail that may help a potential

frontrunner. Alice sends the digest ofM� (ℎ) and her signature over

it (f�) to each +8 ; 8 ∈ [1 . . . =]. Alice chooses coordinator (C) from

V to help with signature aggregation in Protocol 5 and Protocols 6.

Protocol 5: This protocol must be executed between Alice and

members of V. It takes as input the output of Protocol 4, i.e., the

digest/signature over Alice’s message. It outputs the evaluation of

the VDF instance, V , and its corresponding proof. In Line 1, the

coordinator C samples a unique (per user) prime ; from a set of

primes P that contains the �rst 22_ primes. We require each +8 to
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Protocol 6: VDF veri�cation and tx submission.
Inputs :c,~.

Output :Aggregate signature f′agg, transaction CG� .

Parties :user in system (Alice), set of veri�ers (V).

/* Each verifier runs proof verification */

1 for each +8 ∈ V do

2 if ; ∉*8 and ; ∈ �8 then

3 Add ; to*8 .

4 if “accept”←V .Verify(pp, l, y, c ) then

5 "′8 = (“0224?C”,+8 , ;).

6 f′
+ğ
← Agg.Sign(B:+ğ , "

′
8 ).

7 Send ("′8 , f
′
+ğ
) to C.

8 end

9 end

10 end

/* Sig. aggregation and submit tx. */

11 C checks if each Agg.Verify(?:8 , "
′
8 , f
′
+ğ
)
?
= true. If majority

of members of V return §, C returns § to Alice. Else C

does f′agg← Agg.Aggregate("′1, . . . , "
′
9 , f
′
+1
, . . . , f′

+Ġ
),

where 9 > |V|/2.

12 C creates"′agg = (f′agg, "
′
1, . . . , "

′
9 , ?:1, . . . , ?: 9 ) and sends

to Alice.

13 Alice checks if Agg.AggregateVerification(f′agg,"
′
1, . . . , "

′
9 ,

?:1, . . . , ?: 9 )
?
= true and 9 > |V|/2, if yes, Alice creates

"′ = (M�,Magg, "
′
agg) and signs it, f′

�
← Sign(B:�, "

′).

Else returns § and retry.

14 Alice retrieves the current recommended priority fee

(FIRST_FEE) from Protocol 3.

15 Alice creates and submits transaction

CG� = (f′
�
, "′, ?:�, FIRST_FEE) .

independently check ; and verify that it was not generated before

(Lines 2, 3).

Upon checking the validity of ; and Alice’s signature, each +8
creates a message M8 by concatenating ; , 1;>2:2DAA , and ℎ from

Protocol 4 to its id and signsM8 (Lines 5, 6).V’s freshness1;>2:2DAA ,

which represents the block height at the time of request is included

inM8 to prevent o�-line attacks onV . For an o�-line attack, Mallory

requests ; and pre-evaluates the V to submit the frontrunning

transaction when the victim transaction is seen on the network.

However, the smart contract eliminates this attack by verifying the

freshness of V . In Line 7 and 8, each +8 ∈ V updates their �8 to

keep track of used ; values and sends their f8 to C. The list �8 is

used to ensure that no user in the system has been given the current

; forV computation, else colluding users can reuse proofs. The list

*8 is used to ensure that users in the system can only use a given

; once, hence thwarting any replay attacks. In Lines 18 and 19, C

veri�es the signatures of veri�ers, aggregates them, and sends the

aggregate signature to Alice for veri�cation. We note that both �

and* are public lists.

The goal of the aggregate signature scheme in FIRST is to cut

down the cost of verifying each +8 ’s signature individually. More-

over, we can obtain aggregate signatures from all members of V

Protocol 7: Signature validation and SC execution.

Inputs :CG� , 1;>2:=>F and CℎA4Bℎ>;3 .

Output :Smart Contract Functionality.

Parties :User in system (Alice), Smart Contract (SC).

1 Parse CG� = (f′
�
, "′, ?:�, FIRST_FEE),

"′ = (M�, "agg, "
′
agg),

Magg = (fagg, "1, . . . , " 9 , ?:1, . . . , ?: 9 ), and

"′agg = (f′agg, "
′
1, . . . , "

′
9 , ?:1, . . . , ?: 9 ), where 9 > |V|/2.

2 if (� (033A�, 5=0<4 , 033A(� , 8=?DC(� )
?
= ℎ) and (

(;, ℎ, ·, 1;>2:2DAA ) ∈ ["1, . . . , " 9 ]) and

((“0224?C”, ·, ;) ∈ ["′1, . . . , "
′
9 ]) and (|"1, . . . , " 9 | > |V|/2)

and (|"′1, . . . , "
′
9 | > |V|/2) then

3 if Agg.AggregateVerification(f′agg,"
′
1, . . . , "

′
9 ,

?:1, . . . , ?: 9 )
?
= true then

4 if 1;>2:=>F − 1;>2:2DAA < CℎA4Bℎ>;3 then

5 SC executes the intended functionality.

6 end

7 end

8 end

without requiring any trust assumption on them. We refer inter-

ested readers to [15] for further details on the aggregate signature

scheme. Alice checks the validity offagg and the number of received

messages 9 , where 9 > |V|/2. If both return true, Alice retrieves

and veri�es the public parameters ofV , ?? , and starts the evalua-

tion ofV (we recollect that per our system model, Alice evaluates

V). During the evaluation, Alice generates output and proof of

correctness c , which is sent to all members of V (Lines 20, 21).

Protocol 6: Protocol 6 is required to be executed between Alice

and V. It takes as input the VDF evaluation result and its proof

(given as output by Protocol 6), the ?? of V and outputs Alice’s

transaction CG� to be submitted to (� . In Line 2, every +8 ∈ V �rst

checks if ; ∉ *8 . This check ensures that Mallory is not reusing the ;

to evaluateV . Each+8 also checks if ; ∈ �8 , to check if ; has indeed

been assigned to a user. If the check returns true, every+8 ∈ V adds

; to*8 . In Line 4, every+8 ∈ V veri�es the VDF proof c sent by Alice.

Depending on the outcome of the veri�cation, each +8 creates"
′
8

and signs it (Lines 5, 6). Upon completion of the veri�cation phase,

in Line 17, C �rst veri�es each f′8 and aggregates the signatures

into a unique signature f′agg. In Line 18, C creates a tuple "′agg,

containing the f′agg, distinct messages of members ofV, their public

keys, and sends it to Alice. Alice checks the validity of f′agg and the

number of received messages 9 , where 9 > |V|/2, for a majority of

veri�ers from V. 1 If both return true, Alice creates"′ consisting

of her message, M� from Protocol 4, "agg from Protocol 6, and

"′agg from Protocol 5. Alice signs it before creating transaction CG� ,

sets the transaction fees (FIRST_FEE from Protocol 3 and current

Ethereum base fee), and submits the transaction (Lines 19, 20, 21).

Protocol 7:This protocol is used to validate the transaction CG� ,

V’s veri�cation details, and the signature aggregation. Alice creates

1The number of messages received by Alice in Protocol 6 and Protocol 5 are both
denoted by 9 , but we note that the value of 9 in both protocols need not be exactly the
same, as long as it satis�es the property 9 > |V |/2.
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and submits CG� with recommended fee. SC parses CG� to access

necessary �elds. (� veri�es transaction details committed to in Pro-

tocol 4, veri�es the messages of veri�ers and checks if the number

of participants in the veri�cation phase is more than |V|/2. Finally,

SC will check the givenV’s freshness by checking if the di�erence

between the block height at the time of request and the current

lies within a pre-de�ned system threshold that should be adjusted

by dAC. We note that SC examines all messages and employs the

1;>2:2DAA value endorsed by the majority to validate the freshness

of VDF, rather than relying on single 1;>2:2DAA . The SC will abort

the function execution if any check fails.

5 SECURITY ANALYSIS OF FIRST

5.1 Informal Security Analysis

In this section, we analyze the security of FIRST informally by

considering potential attack scenarios and describe how FIRST

eliminates them.

Malicious Veri�er: In this attack, an adversary might try to cor-

rupt some members ofV, and try to glean information about Alice’s

transaction CG� while she computes the VDF. FIRST accounts for

this by having Alice conceal all transaction details by hashing them

and sharing only the digest with the veri�ers (Protocol 4, Steps 2-3),

thus preventing any leakage of sensitive information. The general

security guarantees apply for the case where a malicious veri�er

attempts to frontrun Alice.

Proactive Attacker: Consider a scenario where Mallory or a bot

she created is monitoring the pending transaction pool to identify

a transaction CG� submitted by a user Alice. Let C" represent the

time Mallory �rst sees CG� , with a gas price �� , on the pending

pool. Mallory creates a transaction CG" with gas price �" where

�" > �� . We note that, in order for this attack to succeed, CG" is

required to be included in the previous or in the same block but

before CG� . To address this, FIRST assignsV related parameters and

updates them regularly using the empirical analysis we describe

in Section 6. Since all valid transactions need to wait for FIRST

stipulated time delay (V delay), CG" will need to wait to generate

validV proof. If Alice paid the FIRST recommended priority fee,

CG� will wait for at most C2 time in the pending pool, and since C2
is less than theV delay set by FIRST (C1), Alice’s transaction will

not get frontrun by Mallory with high probability.

Backrunning and Sandwich attack: Backrunning is another at-

tack strategy where Mallory creates a transaction CG" with a gas

price of �" where �" < �� to take advantage of the outcome of

Alice’s transaction [32]. Given the enforcedV delay, the malicious

transaction attempting to backrun the victim transaction has to

wait before entering the mempool, which prevents backrunning,

making it impossible for the attacker’s transaction to be scheduled

in the same block thus preventing frontrunning. Given both fron-

trunning and backrunning are prevented, sandwich attack is also

prevented [44].

Malicious Block Proposer: In Ethereum 2.0, the block proposers

are randomly chosen from active validators whose aim is to propose

a potential block for the slot they are assigned. As a result, they have

full control over inserting, excluding, and re-ordering transactions

akin to miners in the PoW version of Ethereum. A potential attack

can be frontrunning transaction inserted into the block by the

malicious block proposer. However, FIRST already handles this

case: if any transaction does not contain the aggregated signature

of V on the veri�cation ofV proof, the smart contract will reject

the transaction.

Impact on Blockchain Throughput: In EVM-based blockchains,

throughput is constrained by the block gas limit—30 million gas

on Ethereum—with new blocks produced roughly every 12 sec-

onds. Since VDF computation and veri�er coordination are per-

formed entirely o�-chain, only the �nal, veri�er-signed transaction

is submitted on-chain. As a result, FIRST does not a�ect blockchain

throughput. Once submitted, a FIRST transaction behaves like any

other following the standard inclusion and con�rmation processes.

Pre-computed VDF attack: Attackers may attempt to create fron-

trunning transactions in advance and broadcast them when they

see the victim transaction in the pending pool. We eliminate this

pre-computation attack vector by checking the freshness of the

VDF during smart contract execution (Line 4, Protocol 7). Specif-

ically, suppose the di�erence between the current block (where

the transaction is slated for execution) and the block height at the

time of the transaction request is greater than a pre-de�ned system

threshold, the transaction will be reverted. Veri�ers may option-

ally charge a small fee for issuing a new prime ; for the VDF to

create an economic disincentive against repeated VDF challenge

requests. Since veri�er interaction occurs o�chain, standard Web2

techniques—such as IP-based rate limiting or user-level quotas—can

also be applied to mitigate abuse.

5.2 Formal Security Analysis

We analyze the security of FIRST in the Universal Composability

(UC) framework [17]. To this end, we de�ne an ideal functionality,

FFIRST, consisting of three functionalities, Fsetup, Fbc, and Fconstruct
along with two helper functionalities Fsig [17] and Fvdf [27]. We

assume that the optimal functionalities share an internal state and

can access each other’s stored data. We prove the following theorem

in the Appendix C.

Theorem 5.1. Let FFIRST be an ideal functionality for FIRST. Let

A be a probabilistic polynomial-time (PPT) adversary for FIRST, and

let S be an ideal-world PPT simulator for FFIRST. FIRST UC-realizes

FFIRST for any PPT distinguishing environmentZ.

6 EXPERIMENTAL RESULTS AND ANALYSES

We evaluate the performance of FIRST on real Ethereum traces over

a month long period of observation. We analyze FIRST’s suggested

FIRST_FEE during our experiment and show the e�ectiveness of

FIRST in terms of the percentage of frontrunnable transactions in a

given time period.

A low percentage implies that transactions submitted during the

said time period with FIRST_FEE are seldom frontrun. The success

of FIRST is not only dependent on the FIRST system parameters,

namely :, 0;?ℎ0, and C2, but also on the system-speci�c network

dynamics. We replicate our analysis of FIRST over a non-EIP-1559

chain, Binance Smart Chain (BSC). In what follows, we discuss

details of our experimental setup, data gathering, and experimental

results.
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Functionality Fbc
Miner ?8 requesting current 38 : Upon receiving ('4@D4BC'>D=3, B83) from ?8 , send 38 to ?8 .

Adversary corrupting Miner ?8 : Upon receiving (2>AAD?C, ?8 , B83) from A, if | H \ {?8 } | > P/2 then set H := H \ {?8 }, else return §.

Block hashing: When ctrTime == bcHashTime, Fbc takes a set of tuples TX� such that TX� ¦ TX% where TX% represents the set of

transactions in txpoolTable, and |TX� | = ; . TX� is picked such that ; =<8=( |X|,∀X ∈ P(TX% )) and
∑;
8=1 CG8 .CG 5 44 ⪅ blockMaxFee

where P represents a power set function. Fbc then adds blockNum to each tuple (e.g. tuple (CG, blockNum) ∀ CG ∈ TX� ) and moves

them to bcTable and sends to S and A. Fbc sets ctrTime = 0 and blockNum = blockNum + 1.

BC data request handling: Fbc on receiving request (getData, B83) from user D, retrieves all data tuples from bcTable, txpoolTable,

and scTable, and sends to D, S.

BC block num request handling: Fbc on receiving request (getBlockNum, B83) from a user return blockNum.

Initialization of BC: On receiving (8=8C, B83, P,H, blockMaxFee, bcHashTime) fromZ, initialize for each BC miner/validator ?8 ∈ P

a bit 38 := 0, sets blockMaxFee as the max fee limit for each block, sets current block hashing interval time as bcHashTime, sets

ctrTime = 0, and set blockNum = 0. Set H ¢ P to be set of honest validators.

Smart contract deployment: Fbc on receiving (B83, deploy, (�.83, 2>34) from any node stores the tuple ((�.83, 2>34) in an scTable

for later retrieval and execution. The 2>34 of (�.83 will eventually call Fsetup to verify the hash of"D in hashTable and the aggregate

signature in sTable of some submitted transaction CG = ("D , fD , (�.83, (fagg,"1, . . . "= , ?:1, . . . , ?:=), CG 5 44) and check that majority

of"1, . . . , "= contain an (“0224?C”, ·, ·). If veri�cation fails, then (� outputs a failure CG ′, else it continues execution of the (�.83 2>34

which will include verifying hash ℎ of the submitted transaction"D , and �nally outputs a successful CG ′.

Transaction request handling: Fbc on receiving (B83, invoke, CG) stores the CG tuple in txpoolTable. If the CG is invoking a smart

contract (�.83 , then Fbc retrieves the tuple ((�.83, 2>34) from scTable. Fbc executes 2>34 with the given CG and the output transaction

CG ′ is generated. Both transactions are added to txpoolTable and also sent back to user D and S. All rows in txpoolTable are arranged

in descending order of CG 5 44 at all times.

Miners stepping the time counter forward: Upon receiving message ('>D=3$ , B83) from party ?8 set 38 := 1. If for all ? 9 ∈ H :

3 9 = 1, then reset 3 9 := 0 for all ? 9 ∈ P and set ctrTime = ctrTime + 1. In any case, send (BF8C2ℎ, ?8 ) to A. The adversary is noti�ed in

each such call to allow attacks at any point in time.

Figure 3: Ideal functionality for blockchain.

6.1 Data Gathering

In order to get the most accurate waiting times of transactions in

the pending pool, we deployed a Geth2 full node (v.1.11.0) running

on an Amazon AWS Virtual Machine located in North Virginia.

The AWS node had an AMD EPYC 7R32 CPU clocked at 3.30 GHz

with 8 dedicated cores, 32 GB of RAM, 1.3 TB solid-state drive,

running Ubuntu (v.20.4). We also ran a beacon node using Prysm3

(v.3.1.2) software which is required to coordinate the Ethereum

proof-of-stake consensus layer operations. Once the deployed node

synced, we collected the data in the Geth node’s pending pool. The

data collected included transaction arrival times and the transac-

tions’ corresponding unique transaction hashes from block number

15665200 to block number 158866604. For each collected transac-

tion from the con�rmed blocks on the blockchain, we gathered

additional details such as block base fee, paid max priority fee, gas

price, and block con�rmation time. Although the data is from Oc-

tober 2022, the transaction volume has remained stable since then

(see [9]), and Ethereum still lacks frontrunning protection at the

application layer, making the data relevant.

We used a machine with Apple M1 Max chip, 32 GB RAM, 1 TB

HDD, running macOS Monterey (v.12.6) to perform experiments

on the collected data. There were a total of 30.6M transactions for

the given block range (15665200–15886660), out of which, 24.34M

were Type-2 (EIP-1559) transactions and 6.26Mwere Type-1 (legacy,

non-EIP-1559) transactions. We analyzed the more common Type-2

2https://github.com/ethereum/go-ethereum
3https://github.com/prysmaticlabs/prysm
4https://web3js.readthedocs.io/en/v1.2.11/web3-eth-subscribe.html

transactions, FIRST can also be used for Type-1 transactions. Out

of the total 30.6M transactions our node was able to detect the

wait time for 29.65M transactions. Since our node did not receive a

total of 944807 transactions (roughly 3.08%), we conclude that these

transactions were either never sent to the P2P layer because of the

use of relayers (e.g., Flashbots) or our node did not receive them

before their con�rmation on the blocks due to network latency.

In practice, the dApp owner would deploy multiple full nodes to

collect the pending pool data, hence minimizing the chance of

missing transactions due to network latency. We deployed another

full Geth node in AWS in Singapore with the same software and

hardware speci�cations as the one in North Virginia. The intent

was to perform a comparative sanity-check on the transactions

copies recorded at two geographically diverse locations.

We computed the waiting times of transactions received by our

node by subtracting the transaction’s block con�rmation time from

the recorded time when the transaction was �rst seen in our node’s

pending pool. The di�erence in waiting times of transactions in

the US and Singapore was very small. Across all the transactions

that we captured, the di�erence between the receipt times in the

US and Singapore was no more than 2 ns for any transactions.

Interestingly, our Singapore node also never received any of the

944807 transactions that were not seen by our US node, leading us

to conclude that those transactions were privately relayed.

6.2 Extension to non-EIP-1559 chain

Many Ethereum Virtual Machine (EVM) based blockchains, such as

Polygon and Fantom, have implemented the EIP-1559 patch. Despite
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Functionality Fconstruct
User request: Upon receipt of tuple (sid, req, ℎ, fD ) from a

userD with identi�erD83 ,Fconstruct adds (D83, ℎ, fD ) to uTable,

and returns “success” to D, and forwards (B83, req, D83, ℎ, fD )

to V and S.

User response: Upon receiving (B83, aggregated, fagg, D83)

from C, Fconstruct looks for a tuple (fagg, ·, ·) in sTable; if such

a tuple exists Fconstruct retrieves tuple (;, D83, ·) from cTable,

constructs and returns tuple (B83, ;, fagg, ·, ·) to D83 and to S,

else returns § to both.

User veri�cation: Upon receiving (B83, verify, ;, ?, B) from

uid, Fverify checks if (;, D83, “not-used”) exists in cTable; if

yes, updates tuple in cTable to (;, D83, “used”) and forwards

(B83, ;, ?, B) to each +8 ∈ V and S, else Fverify returns § to

Alice and S.

Coordinator request: Upon receipt of a message (B83, ;,D83)

from C, Fconstruct checks if there exists a tuple (D83, ℎ, fD ) in

uTable. If not, return § to C and S. If (;, ·, ·) exists in cTable,

return (B83, fail, ;) to C and S, if (;, ·, “used”) already exists

in cTable, return (B83, used, ;) to C and S. Else, Fconstruct
adds (;, D83, “not-used”) to cTable,Fconstruct retrieves (D, ?:D )

from idTable, constructs tuple (B83, valid, ;, ℎ, fD , ?:D ) and for-

wards to all +8 ∈ V and S.

Coordinator response: Upon receiving (B83,+8 ,<8 , f+ğ )

from members of V, Fconstruct forwards (B83,+8 ,<8 , f+ğ ) to

C and S.

Figure 4: Ideal functionality for transaction processing and

VDF construction.

the overall trend of EVM-based blockchains adopting EIP-1559, for

completeness, we also studied a non-EIP-1559 chain protocol. We

replicated our analysis on the Binance Smart Chain (BSC) which is

currently a non-EIP-1559 chain. We deployed a Geth node (v.1.1.17)

on AWS Singapore and recorded transaction wait times for 45K

blocks (23285229–23288229), totaling 5.29M transactions (statisti-

cally signi�cant). Out of the 5.29M transactions, our node did not

receive 141157 (2.66%). In non-EIP-1559 chains, the gas price is used

to incentivize the validator to pick up a transaction. Hence, FIRST

uses gas price to calculate the FIRST_FEE in Protocol 3.

6.3 Aggregate Signature Implementation

To assess the cost associated with verifying FIRST transactions

via a smart contract, we implemented the aggregated signature

veri�cation function [15] using the Solidity programming language

and deployed it within a smart contract.

We used elliptic curve pairing operations, such as addition, mul-

tiplication, and pairing checks introduced by Ethereum in the form

of precompiled contracts with EIP-197 5. In Ethereum, precompiled

contracts enable the deployment of computationally-intensive op-

erations at a lower cost compared to the users implementing them

on their smart contracts. Our implementation uses the alt_bn128

curve. We used the bn2566 library (v.0) and the Go programming

5https://eips.ethereum.org/EIPS/eip-197
6https://pkg.go.dev/github.com/cloud�are/bn256

Table 1: GAS CONSUMPTION FOR AGGREGATE SIGNA-

TURE VERIFICATION ON SMART CONTRACT.

Number of Veri�ers Total Gas Consumption (gas units)

5 374423

7 474327

10 621180

15 871987

20 1122943

language (v.1.17.5) to implement the aggregate signature genera-

tion and veri�cation schemes. Table 1 shows our results for the

veri�cation of the aggregated signatures by the smart contract with

di�erent numbers of veri�ers. For example, it costs 621180 units

of gas for ten veri�ers to verify the aggregated signature. Using

the median gas cost of 10 GWei (representative of current market

conditions as of December 2024) and the current Ether price of

$3300, the cost to verify the aggregated signature of 7 veri�ers is

approximately $15.65.

A 2021 study found that frontrunning extracted approximately

$18 million across 200,000 transactions, or about $90 per trans-

action [37]. FIRST adds an overhead of $10–$15 per transaction,

mainly due to the on-chain signature veri�cation. This cost rep-

resents a 15% premium per protected transaction. The primary

contributor to the cost is the pairing operations required for sig-

nature veri�cation. Currently, EIP-197 is the only supported pre-

compiled contract for pairing operations on Ethereum, using the

alt_bn128 curve. This limited support contributes to the high gas

costs. While proposals like EIP-2537 aim to introduce more e�-

cient cryptographic primitives such as BLS12-381, they have not

yet been implemented on Ethereum mainnet as of May 2025. Once

adopted, these upgrades are expected to signi�cantly reduce veri-

�cation costs. In addition, designing e�cient aggregate-signature

schemes is an area of continuing research—we anticipate that the

schemes to become more e�cient in the future.

FIRST serves as a proof-of-concept demonstrating frontrunning

protection on EVM-compatible chains. Additional savings are pos-

sible using gas gol�ng7. We will assess that in the future. A note of

caution is that inline assembly is error-prone and a known source

of vulnerabilities in smart contracts [18].

6.4 Scalability of VDF

We assess the practicality of VDF on devices with varying compu-

tational capabilities by comparing the VDF computation times on

these devices. The VDF [42] used in FIRST has a complexity of$ () )

for VDF proof generation and $ (log) ) for veri�cation, where ) is

the number of steps required for proof generation.

For client-side costs experiments, we use a rack server, speci�-

cally the PowerEdge R650 Intel Xeon Gold 6354 with 18 cores and

36 threads per core, equipped with 256 GB RDIMM and NVIDIA

Ampere A2. Additionally, we evaluated the performance on an

iPhone 12 with an A14 Bionic 6-core CPU, 64GB storage, and 4GB

RAM, as well as the MacBook Pro. Detailed speci�cations for the

MacBook Pro used in our evaluation can be found in Section 6.1.

For this experiment, we choose the sequential steps amount (T) to

7Gas gol�ng refers to low-level optimizations such as inline assembly.
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be 1 million whereas the bit length of security parameters to be

2048 bits. We give our results in Figure 5. While Figure 5 shows

that rack servers compute VDFs faster than other devices, the dif-

ference is not su�cient to enable successful frontrunning. This is

because no entity, regardless of computational resources, can see

the transaction details until after the user’s VDF computation is

complete and the transaction enters the pending pool. Even highly

resourceful devices do not have enough time to complete a new

VDF computation fast enough to frontrun, especially when the user

includes the optimized priority fee recommended by FIRST_FEE.

6.5 Analyses and Discussion

We plot Figure 6a and Figure 6b to demonstrate how FIRST recom-

mended fee changed over our observation period in Ethereum and

BSC blockchains, respectively. The �gures show the recommended

fee (FIRST_FEE) on the Y-axes for the corresponding block number

on the X-axes, computed using Protocol 3. In both experiments,

: = 3 and U = 0.6. For Ethereum C2 was 30s and for BSC it was 5s.

The FIRST_FEE calculated on Ethereum refers to the recommended

priority fee, while on BSC, it refers to the recommended gas price.

In Figure 6a, the X-axis represents the 198K blocks on the Ethereum

blockchain. As seen from the graph, the highest spike in our recom-

mended fee is around block number 15697567. Some blocks have

an associated spike in the recommended transaction FIRST_FEE

due to the surge in the priority fees paid by transactions in the

prior blocks. For example, the sale of tokens for the popular NFT

project Art Blocks was con�rmed in block number 15697567. Out of

the 446 transactions in this block, 405 purchased tokens using the

Art Blocks contract and paid much higher priority fee than other

network transactions. This a�ected the FIRST_FEE for 15697568.

Similarly, the second-highest spike around block number 15741444

was due to the NFT project “BeVEE - Summer Collection” sales.

The X-axis in Figure 6b represents the 41K blocks on the BSC

blockchain. We see a spike in the FIRST fee for block 23298282

because four transactions indexed in the �rst four spots of the block

23298281 paid an average of 858.34 GWei in gas fee—escalating the

recommended FIRST fee. On analyzing the block, we believe that

the transactions paid high fee to pro�t from arbitrage opportunity.
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Figure 5: Comparison of VDF computation times across mul-

tiple devices.

Despite the unpredictable events in the Blockchain, Figures 6a

and 6b show that the computed FIRST_FEE adjusts to network

activities. In general, we noticed signi�cantly less number of spikes

in BSC, compared to Ethereum. This is due to the fast con�rmation

of transactions in BSC–more discussion at the end of this section.

To initiate our experiments, we obtained the 50Cℎ percentile

of the maximum wait time for the �rst 100 blocks and to better

handle system dynamism, set C2 to twice the value, C2 = 30secs. We

also analyzed the Ethereum data for U = {0.1, 0.2, 0.4, 0.6, 0.8} and

found that the U = 0.6 gives us better success rate than other values.

Note that despite the occasional spikes most transactions pay a low

priority fee, hence the value of U has limited impact.

For our analysis, we set : = 3, resulting in the VDF delay

C1 = 90secs. To reiterate our use cases discussion (Section 7), the

VDF delay value is a function of the application and its risk appetite

and can be tuned in FIRST. Even with C1 = 30secs, only 0.004%

of transactions were susceptible to frontrunning! We discuss this

below. Let CG8 represent the 8
Cℎ transaction in a block (1), where

CG8 .5 44 and CG8 .2C8<4 are the transaction fee and the duration CG8
waited on the mempool respectively, and )1 represents the num-

ber of transactions in block 1. Then, the fraction of potentially

frontrunnable transactions in 1 is given by,

5 A =

∑)Ę
8=0JCG8 .5 44 g FIRST_FEEKJCG8 .2C8<4 g C1K

)1
, (1)

where J.K indicates Iverson brackets such that J8 5 44 g C8?4K is true
(1) if 8 5 44 g C8?4 , is false (0), otherwise.

We analyzed the Ethereum and BSC data for di�erent values

of : . Figure 7 shows the percentage (5 A × 100) of transactions

that are frontrunnable out of the total transactions (24.34M in

Ethereum and 5.14M in BSC) for di�erent values of : . With the

VDF delay of 90s (: = 3) and the FIRST recommended fee, on the

Ethereum blockchain, 196319 out of 198235 blocks (> 99%) had

no frontrunnable transactions! With C1 = 15secs (: = 3) and the

FIRST recommended fee per BSC block, in BSC none of the transac-

tions were frontrunnable. In fact, the percentage of frontrunnable

transactions goes to zero for : g 2. Our choice of : = 3 for the

data is a good balance between the success rate and the imposed

transactions delay.

As we discussed before, on Ethereum, the chance of transactions

being frontrun is a bit higher on account of higher volatility (we

theorize, due to NFT transactions and slower block con�rmation

time) compared to BSC, which is more stable on account of the

faster settling of transactions. For example, from our data, in the

time it takes Ethereum to con�rm one block, BSC con�rms on an

average 4.4 blocks. Each Ethereum block in our dataset has on an

average 151 transactions, whereas it is 120 transactions in each BSC

block. Thus, 666 BSC transactions are con�rmed in the same time

as 151 Ethereum transactions.

7 DESIGN CHOICES, COMPATIBILITY, USE
CASES AND LIMITATIONS

In this section, we explore potential alternative solutions and their

disadvantages, the design choices of FIRST, its compatibility with

other protocols, and the limitations of our work.
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(a) Recommended FIRST Fee for Ethereum. (b) Recommended FIRST Fee for BSC.

Figure 6: Recommended FIRST fee for Ethereum and BSC blockchains per block.

Veri�ers: One might question the need for a VDF in the presence of

an honest-majority committee, which can be used to verify delays.

A veri�er-based approach would require each veri�er to maintain

a timer per request, which becomes infeasible as the transaction

volume scales. Moreover, such delays cannot be independently

veri�ed. In contrast, VDFs are publicly veri�able and e�cient to

check.

Compatibility with private transaction: The FIRST framework

is designed to protect the transaction from getting frontrun. Since

it does not change transaction structure, it is compatible with pri-

vate relayers, such as Flashbots [30]. The only requirement for a

transaction before its submission to the relayers is to include the

aggregated signature ofV on the veri�cation ofV proof (Protocol 5,

Line 20). The (� will assert if the transaction includes the aggre-

gated signature and rejects it if not present. FIRST independently
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Figure 7: Percentage of frontrunnable transactions (Y-axis)

for di�erent values of FIRST parameter : (C1 = : × C2).

prevents frontrunning attacks on EVM-based blockchains without

needing extra protocols. While compatible with Flashbots, com-

bining them is redundant and could compromise security through

relayer delays.

Potential use cases: Ethereum Name Service (ENS) [4] aims to

map long and hard-to-memorize Ethereum addresses to human-

readable identi�ers. Recent sale trends and exorbitant o�ers, such

as amazon.eth, which received a million-dollar o�er [5], indicate

the importance of frontrunning prevention solutions. FIRST can be

used during the sale of these domain names to prevent frontrunning.

Non-fungible tokens (NFTs) are unique cryptographic tokens that

live on blockchains and are not possible to forge. One of the largest

NFT marketplace Opensea exceeded 10 billion dollars in NFT sales

in the third quarter of 2021 [6]. Not surprisingly, frontrunning

bots are watching the mempool for NFT sales to create a counter

transaction to frontrun. One can employ FIRST to prevent such

attacks on the marketplaces.

Compatibility with Time-Sensitive Applications: FIRST can

be integrated with time-sensitive dApps, such as DEXes and NFT

marketplaces, to prevent frontrunning attacks. When a platform

adopts FIRST, all user transactions experience a uniform VDF de-

lay, ensuring that transactions are properly time-shifted and fairly

ordered. The VDF delay can be tuned to balance responsiveness

and security, minimizing user inconvenience while maintaining

strong protection guarantees. In the event of a price discrepancy

between a FIRST-protected DEX and other exchanges, arbitrageurs

will naturally intervene to close the price gap, ensuring consistency

across platforms without undermining the protocol’s security.

Limitations: Adjusting the real-world delay time with the given

VDF delay parameter for every user’s computational capabilities

is a challenging and open-research problem [12]. While it is an

orthogonal task to ours, FIRST mitigates the problem by picking

the C1 >> C2 — this ensures that a more-capable Mallory cannot

frontrun a less-capable Alice. The VDF delay parameter is selected

11



based on observed transaction settlement times onchain and the

computational capabilities of high-end contemporary machines.

While not bulletproof, our analysis shows that over 99% of transac-

tions are no longer susceptible to frontrunning under FIRST.

Another limitation arises when an entity tries to re-submit a

pending transaction created to interact with the FIRST protected

protocol, perhaps with a higher gas fee. Since the transaction is seen

in the pending pool by all the entities, it increases the chances of

getting frontrun. Lastly, our framework does not support the inter-

action of two FIRST protected contracts, which we aim to address

in future work. We note that FIRST is a probabilistic solution as it

recommends a fee to be paid by the users in the system to avoid get-

ting frontrun with a high probability. However, as speci�ed by the

advantage statement in our theoretical analysis, there is a chance

that a su�ciently funded and powerful adversary can outpace and

frontrun honest users. To successfully frontrun a target user, an

adversary not only needs commensurately larger computational

resources than the norm to compute the VDF proof faster, but the

adversary also needs to delay the target user’s transaction in the

mempool for the duration of time it takes to compute a valid VDF

proof by inserting other transactions with higher fees than the tar-

get. This is a high barrier even for a very resourceful adversary. This

is the price we pay for having an autonomous distributed system

with no central control. Achieving zero frontrunning probability

would require centralized transaction serialization, compromising

blockchain decentralization and scalability.

8 RELATED WORK

Current frontrunning research focuses on attack classi�cation, prof-

itability analysis, and mitigation strategies. We describe each below.

Frontrunning prevention strategies: Research in frontrunning

prevention falls into three broad categories: (a) solutions that re-

quire direct interaction with miners to include the transaction in

the upcoming block (private relayer approaches) [30]; (b) solutions

designed for DEXs (protocol incentive design) [43, 44]; and (c) so-

lutions that prevent arbitrary reordering of transactions (order

fairness) [23, 24, 26]. In the �rst category, Alice sends CG� directly

to miners via hidden endpoints to prevent adversaries from iden-

tifying her transaction in the pending pool. Flashbots [30] is one

example, where entities called relayers bundle and forward transac-

tions to miners through private channels. However, relayers them-

selves could perform frontrunning attacks as they have access to

the complete transaction details. The second category of solutions

is built for AMM-based DEXs; it reduces the risk of frontrunning

by computing an optimal threshold for the frontrunner’s transac-

tion and routing the victim’s swap request to minimize potential

pro�t extraction. However, these solutions are speci�c to DEXs and

cannot be applied to other dApps such as auctions, naming ser-

vices, or games [22, 25, 43]. The third category of solutions is built

upon the order-fairness property, which ensures that the order of

transactions in the �nalized block re�ects the order in which users

submitted them [23, 24, 26]. These solutions require signi�cant

changes to the consensus layer, making them impractical, while

our approach works with existing EVM-based blockchains without

modi�cation.

Surveys of frontrunning and related mechanisms: Eskandari

et al. presented a taxonomy of frontrunning attacks and analyzed

the attack surface of top dApps [22]. Qin et al. [32] extended the

taxonomy of [22] and quanti�ed the pro�t made by blockchain

extractable value [32]. Daian et al. [20] revealed frontrunning bots

competing in priority gas auctions and coined "Miner Extractable

Value" (MEV) to describe miners reordering transactions for pro�t.

[12] presented the state-of-the-art in frontrunning research and

proposed a categorization of mitigation strategies. Additionally,

Yang et al. developed a taxonomy of MEV prevention solutions and

conducted a comparative analysis of these approaches.

Pro�tability analysis: The pro�ts made by frontrunners have

been quanti�ed by Torres et al. [37] and Qin et al. [32]; the latter

also brought to attention the presence of private transactions sub-

mitted to miners. Zhou et al. [44] formalized and quanti�ed the

pro�t made by sandwich attacks enabled by frontrunning on decen-

tralized exchanges. Qin et al. [33] analytically evaluated Ethereum

transactions’ atomicity, analyzed two �ash loan-based attacks, and

demonstrated how attackers could have maximized their pro�t.

Wang et al. [41] proposed a framework that analyzes the pro�tabil-

ity conditions on cyclic arbitrage in DEXs.

There are a couple of prior works [16, 39] that do not fall into

any of the aforementioned three categories. LibSubmarine uses a

commit-and-reveal scheme to prevent frontrunning [16], where the

committer must create a new smart contract for every transaction

they submit to a dApp, which is ine�cient. In a recent work, Varun

et al. [39] proposed a machine learning approach to detect trans-

actions that were frontrun in real-time. This approach requires

the machine learning model to learn regularly. Further, the ap-

proach does not take into account priority fee, hence could fail to

identify high priority fee based frontrunning transactions. There

are also works that are related to our proposed scheme, such as

Slowswap [7], which utilizes VDFs to introduce delays for transac-

tions related to AMMs only. However, the current implementation

employs a uniform VDF delay for all transactions, which is not

ideal given the dynamic nature of Ethereum. In contrast, FIRST

conducts statistical analysis and assigns VDF delay based on the

network usage. Another solution in the MEV mitigation space is

Radius [8], which also aims to prevent frontrunning and sandwich

attacks by implementing encrypted mempools. The Radius solution

requires a mempool redesign, limiting its applicability, whereas

FIRST integrates seamlessly with any EVM-based blockchain.

9 CONCLUSION

We introduced FIRST, a decentralized framework aimed at mitigat-

ing frontrunning attacks on EVM-based smart contracts without

necessitating changes to the blockchain consensus layer. Unlike

application-speci�c approaches, FIRST is designed as a versatile

and general-purpose solution, ensuring broad applicability across

diverse dApps. Experimental results show that FIRST e�ectively

reduces the likelihood of frontrunning attacks on two prominent

blockchains: Ethereum and Binance Smart Chain. Additionally, the

security guarantees of FIRST are rigorously established through the

UC framework. In the future, we will explore gas gol�ng and better

aggregate signature design to help reduce the gas fees needed for

on-chain signature veri�cation.
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A DEFINITIONS OF CRYPTOGRAPHIC
PRIMITIVES

Definition A.1. (Veri�able Delay Function [13]) A veri�able

delay function,V is de�ned over three polynomial time algorithms.

(a) Setup(_,) ) → ?? = (4:, E:): This is a randomized algorithm

that takes a security parameter _ and a desired puzzle di�culty )

and produces public parameters ?? that consists of an evaluation key

4: and a veri�cation key E: . We require Setup to be polynomial-time

in _. By convention, the public parameters specify an input space -

and an output space . . We assume that - is e�ciently sampleable.

Setup might need secret randomness, leading to a scheme requiring

a trusted setup. For meaningful security, the puzzle di�culty ) is

restricted to be sub-exponentially sized in _. (b) Eval(4:, G) → (~, c):

This algorithm takes an input G ∈ - and produces an output ~ ∈ .

and a (possibly empty) proof c . Evalmay use random bits to generate

the proof c but not to compute ~. For all ?? generated by Setup(_,) )

and all G ∈ - , algorithm Eval(4:, G) must run in parallel time )

with poly(log() ), _) processors.

(c) Verify(E:, G,~, c) → {“accept”, “reject”}: This is a deterministic

algorithm that takes an input, output and proof and outputs accept

or reject. The algorithm must run in total time polynomial in log)

and _. Notice that Verify is much faster than Eval.

Definition A.2. (Aggregate signature [15]) An aggregate signa-

ture scheme is de�ned over �ve polynomial time algorithms: (KeyGen,

Sign, Verify, Aggregate, AggregateVerification). Let G1 and G2 be

two multiplicative cyclic groups of prime order ? generated by 61
and 62, respectively. Let U be the universe of users. KeyGen(1_) →

(G8 , E8 ): Each user picks random G8 ← Z? and does E8 ← 6
Gğ
2 . The

13



user’s public key is E8 ∈ G2 and secret key is G8 ∈ Z? .

Sign(G8 , "8 ) → f8 : Each user 8 ∈ U, given their secret key G8 and

message of their choice "8 computes hash ℎ8 ← � ("8 ) and signs

f8 ← ℎ
Gğ
8 where f8 ∈ G1 and � : {0, 1}∗ → G1.

Verify(E8 , "8 , f8 ) → {true, false}: Given public key E8 of user 8 , a mes-

sage"8 and f8 , compute ℎ8 ← � ("8 ) and return true if 4 (f8 , 62) =

4 (ℎ8 , E8 ).

Aggregate("1, . . . , "=, f1, . . . , f=) → fagg: Given each user 8’s sig-

nature f8 on a message of their choice"8 , compute f066 ←
∏=

8=1 f8
where = = |* |.

AggregateVerification(fagg, "1, . . . , "=, ?:1, . . . , ?:=) → {true, false}:

To verify aggregated signature f066 , given original messages"8 along

with the respective signing users’ public keys E8 , check if:

(1) All messages"8 are distinct, and;

(2) For each user 8 ∈ * , 4 (f8 , 62) =
∏=

8=1 4 (ℎ8 , E8 ) holds true

where ℎ8 ← � ("8 ).

B EIP 1559

The London hard fork to Ethereum introduces novel transaction

pricing mechanisms to improve the predictability of gas prices

even during dynamic periods [40]. Users are now required to pay a

base fee, which is a fee computed according to a formula that may

increase or decrease per block depending on network utilization.

Besides a base fee, a user is encouraged to pay a priority fee to

incentivize the validators to prioritize the user’s transactions. The

transactions that follow EIP-1559 are termed Type-2 transactions.

While Ethereum has adopted EIP-1559, it’s worth noting that other

prominent blockchain networks, like Binance Smart Chain, have

not yet implemented this standard. Despite the di�ering approaches,

Ethereum and Binance Smart Chain remain two of the most widely

used blockchain platforms. In our evaluation, we leverage these

platforms as references to evaluate the proposed framework and

demonstrate its applicability.

C UC FUNCTIONALITIES

C.1 Proof of Theorem 5.1

We assume the existence of eight tables: uTable, aTable, cTable,

sTable, idTable, scTable, bcTable and txpoolTable that store the

internal state of FFIRST and are accessible at any time by Fsetup
(Figure 8), Fbc (Figure 3), and Fconstruct (Figure 4), which are time-

synchronized functionalities. The uTable is used to store user trans-

action speci�c information, aTable is used to store the signatures of

veri�ers and users, cTable keeps track of VDF-speci�c challenges

issued to users, sTable stores the aggregated signatures of veri�ers,

and idTable stores the identi�ers and keys of users. The scTable

stores the deployed smart contract address and code, bcTable stores

the generated transactions, and txpoolTable stores the current trans-

action pool. We assume that Fsetup’s C1 and C2 time period veri�-

cation implicitly checks that C1 and C2 are in the same unit of time

(i.e., both are in seconds, minutes, etc.).

We note that Fbc does not completely follow EIP-1559 because

Ethereum, like other real-world protocols and systems, is constantly

evolving, and as these systems change the ideal world would need

to be constantly updated to model the real world accurately. Fbc

Functionality Fsetup
Setup: On receiving tuple (setup, C1, C2, 3, :, _, U, B83) from

dApp creator dAC, Fsetup veri�es that C1 > C2, if not return §.

Fsetup sets value of VDF delay to C1 (B in F
W

vdf
), locally stores

variables 3 , : , _, U and initializes ��'() recommended fee

FIRST_FEE = 0.

KeyGen: Upon receiving a request (KeyGen, D83, B83) from

user D, Fsetup calls Fsig with (KeyGen, D83). When Fsig
returns (VerificationKey, D83, ?:D ), Fsetup records the pair

(D, ?:D ) in idTable and returns (VerificationKey, D83, ?:D ) to

the user and S.

Sign: When Fsetup receives a request (Sign, D83,<, B83)

from user D, it forwards the request to Fsig, who returns

{(Signature, D83,<, f),§}. If return value is not §, Fsetup
stores (<,f, ?:D , 1) in aTable, where ?:D is D’s veri�cation

key created and stored during key generation. Fsetup forwards

(Signature, D83,<, f) to D and S, else returns § to both.

Verify: When Fsetup receives (Verify, D83,<, f, ?:′, B83)

from user D, it forwards the request to Fsig, who re-

turns (Verified, D83,<, 5 ), 5 ∈ {0, 1, q}. Fsetup records

(<,f, ?:′, 5 ) in aTable and returns (Verified, D83,<, 5 ) to

both user and S. Aggregate Signature: Upon receiving

(Aggregate, "1, . . . "=, ?:1, . . . , ?:=, f+1
. . . f+Ĥ , B83) from C,

Fsetup checks if a tuple (fagg, "1 . . . "= , ?:1, . . . , pk=) already

exists in sTable, if so, it forwards (Aggregated, fagg) to C and

S. Else, it checks if = > |V|/2, if not then § is returned to

C and S. If previous check passed, Fsetup generates a string

fagg ←$ {0, 1}_ , adds (fagg, "1, . . . "=, ?:1, . . . , ?:=) to table

sTable, and forwards (Aggregated, fagg) to C and S.

Aggregate Verify: Upon receiving (aggVer, fagg,"1, . . . "= ,

?:1, . . . , ?:=, B83) from an entity, Fsetup checks if tuple

(fagg, "1, . . . "=, ?:1, . . . , ?:=) exists in sTable. If yes, it for-

wards “accept”, else forward “reject” to the calling entity and

S.

Hash Interface: On receiving a message (ℎ0Bℎ,<, B83) from

a userD, Fsetup checks if tuple (<,ℎ) exists in hashTable. If so,

it returns ℎ and exits. If not then Fsetup creates ℎ ←$ {0, 1}_ ,

adds (<,ℎ) to hashTable, and returns ℎ to D.

Calculate FIRST Fee: For every new block mined, Fsetup
sends getData() request to Fbc. Fsetup then checks priority

fee (58 where 8 ∈ [1 . . . =]) paid by CG1 . . . CG= transactions in

the latest block that waited less than C2 time, and calculates

the value of 50E6 = 1/= ×
∑

58 . FIRST_FEE = U × 50E6 + (1 −

U) × FIRST_FEE.

Return FIRST fee: On receiving request (A4CDA=�44, B83)

from user, Fsetup returns current value of FIRST_FEE.

Figure 8: Ideal functionality for system setup and signatures.

incorporates block size based on maximum fees per block and the

block hash rate, and is still general enough to model even non-EIP-

1559 blockchains similar to the real world ��'() protocol which is

applicable to multiple blockchain types.

To make the presentation clear, for each corruption case, through

a complete run of the protocol, we discuss the twoworlds separately,
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and show thatZ’s viewwill be the same.Part 1: Let us �rst consider

the system and parameter setup described in Protocols 1, 2, and 3 .

Z initializes Fbc with (8=8C, B83, P,H).

1) Case 0: All veri�ers are honest

a) Real-world: In the real-world (Protocols 1, 2, 3), the dAC

generates a smart contract, deploys it on the BC, and initializes

FIRST_FEE calculation. The = veri�ers will generate their keypairs,

(?:8 , B:8 ), 8 ∈ [1..=]. Z sees the (� and each veri�er’s ?: . dAC

will pick a ) , and initialize the V class group with a negative

prime 3 . Note that since all veri�ers are honest, Z does not get

to see their internal state, and secret keys. The view ofZ will be

((�, ?? = (G,) , 3), ?:1, . . . , ?:=, _, :, C1, C2, U,FIRST_FEE), where _

is the security parameter, and : is the multiplying factor for C2.

b) Ideal-world: S picks a security parameter _, (), :) ←$ Z
+,

negative prime 3 , vdf delay C1, target mempool wait time C2, and

EWMA parameter value U , and sends (setup, C1, C2, 3, :, U) to Fsetup
to start the FIRST_FEE calculation.S callsFbc with (B83, deploy, (�.83, 2>34)

(this step is implicit in all the following game hybrids). A sends

getData() to Fbc to get a copy of (� (also including all contents of

the blockchain).Smakes= calls to Fsetup, (KeyGen, E838 ), 8 ∈ [1..=].

Fsetup returns (VerificationKey, E838 , ?:8 ) to S. S generates a ran-

dom G such that G = �; (3), and sets ?? = (G,) , 3). S call Re-

turn FIRST fee to get computed value of FIRST_FEE. Thus the

view of Z is the same as the real-world. The view of Z will be

((�, ?? = (G,) , 3), ?:1, . . . , ?:=, _, :, C1, C2, U, FIRST_FEE).

2) Case 1: Some veri�ers are corrupted

a) Real-world: Per our adversary model, less than half of the

veri�ers can be corrupted. dAC deploys the SC on the blockchain,

initializes FIRST_FEE calculation, and all veri�ers will generate their

keypairs. In this case, Z will have access to both ?: and B: of a

corrupted veri�er.Z will also have access to the corrupted veri�ers’

�8 = *8 = ∅. Veri�ers, corrupt or otherwise, have no role to play in

Protocol 3. dAC will deploy the (� on the blockchain as before, and

will generate G = �; (3),) . Let the set of corrupted veri�ers be V′,

such thatV′ ¢ V, and |V′ | < |V|/2. The view ofZ will be ((�, ?? =

(G,) , 3), {?:8 , B:8 , �8 ,*8 }8∈V′ , {?: 9 } 9∈ (V) ,_, :, C1, C2, U, FIRST_FEE).

b) Ideal-world: As in Case 0,S simulates dAC’s role and receives

fromFsetup (Init,) , 3, FIRST_FEE).S callsFbc with (deploy, (�.83, 2>34).

Z sends getData() to Fbc to get a copy of (� (also including all

contents of the blockchain). For the honest veri�ers, V − V′, S

creates ?: ←$ {0, 1}_ . Corrupt veri�ers in V′ ¢ V are handled

by Z. Following the same procedure as in Case 0’s ideal world,

S generates a random G s.t., G = �; (3) and outputs ((�, ?? =

(G,) , 3), ?:1, . . . , ?:=, :). The view ofZ, taking into account the ad-

ditional informationZ has from corrupted veri�erswill be ((�, ?? =

(G,) , 3), {?:8 , B:8 , �8 ,*8 }8∈V′ , {?: 9 } 9∈V, _, :, C1, C2, U, FIRST_FEE),

which is the same as the real-world.

Part 2: Now, let us consider Alice’s setup as given in Protocol 4.

1) Case 0: Alice and all veri�ers are both honest

a) Real world: Alice generates"� , hashes it, signs the digest,

ℎ: f� ← Sign(ℎ, B:�), and sends (ℎ, f�) to all members of V.Z’s

view will be ∅ (since all veri�ers are honest, it does not have access

to their inputs).

b) Idealworld:S simulates Alice andwill receive (req, aliceID, ℎ, f�)

from Fconstruct. S does not take any further actions.

2) Case 1: Alice is honest, some veri�ers are corrupt

a) Real world: Alice generates the ("�, ℎ, f�) as in Case 0, and

sends (ℎ, f�) to V. If V
′ is the set of corrupted veri�ers,Z’s view

will consist of V′’s inputs, i.e., ({B:8 }8∈V′ , ℎ, f�).

b) Ideal world: S generates an ℎ ←$ {0, 1}: (note that veri�ers

do not know the preimage). S then calls Fsetup with (Sign, 083, ℎ),

where083 is chosen at random.Fsetup returns (Signature, 083, ℎ, f083 ).

S outputs (ℎ, f083 ).

3) Case 2: Alice is corrupt and all veri�ers are honest

a) Real world: Alice generates"� and f� over"�’s digest. If

the signature does not verify, veri�ers will eventually return §. If

Alice does not send anything, veri�ers will do nothing. In any case,

Z’s view will be ("� = (033A�, 5name, 033A(� ), ℎ, f�).

b) Ideal world: S gets (ℎ, f�) fromZ. S does not take any fur-

ther actions.Z’s viewwill be ("� = (033A�, 5name, 033A(� ), ℎ, f�).

4) Case 3: Both, Alice and some veri�ers are corrupt Note that

this cannot be locally handled by Z, as one might expect, since

some veri�ers are still honest.

a) Real world: Alice’s actions will be the same as in Case 2’s

real world.Z’s view will be ("�, ℎ, f�, {B:8 }8∈V′ ), where V
′ is the

set of corrupted veri�ers.

b) Ideal world: S gets (ℎ, f�) from Z. S does not take any

further actions.Z’s view is same as real world.

Part 3: Now let us consider Alice, C, and veri�ers’ interaction as

given in Protocol 6, 5, and 7. In the following cases, whenever some

veri�ers (V′) are corrupt, |V′ | < |V|/2, hence, a majority of veri�ers

are still honest.

1) Case 0: Alice, C and all veri�ers are honest

a) Real-world: On receiving a new VDF request from Alice, C

picks an ; ←$ P, all veri�ers send ("8 , f+ğ ) to C. C will verify the

signatures, and will return the aggregate signature fagg to Alice,

who will then compute the VDF proof, (c,~). This proof is sent

to the V who will verify it before submitting their signatures to

the C for aggregation. The aggregated signature is sent to Alice

by the C who veri�es it, and eventually submits CG� with the cur-

rent FIRST_FEE to the (� using (B83, invoke, CG�). Z’s view will

only be {?:8 }8∈V initially, and it will see CG� only when it hits the

transaction pool.

b) Ideal-world: S creates "� , creates hash ℎ� = � ("�) and

calls Fsetup and getsf� . It then forwards (req, ℎ�, f�) to Fconstruct’s

User request function and receives “success" and (req, aliceID, ℎ�, f�).

S generates ; on behalf of the C and sends (;, aliceID) to Fconstruct
usingCoordinator request function and it receives (valid, ;, ℎ�, f�, ?:�).

For each V8 , S signs the"8 = (;, ℎ�,V8 , 1;>2:2DAA ) using Fsetup and

1;>2:2DAA is retrieved by calling Fbc, i.e., using getBlockNum() and

being returned1;>2:2DAA ← +=D<CG/1;>2:@C~,.S sends (V8 , "8 , f"ğ
)

to Fconstruct using Coordinator response function call. S then

simulates the aggregation step of C by calling Fsetup and receives

fagg. S calls Fconstruct User response to send fagg to Alice. S

calls Fvdf (start, ;) function to start V delay. After V delay time,

S calls (output, ;) function in Fvdf to generate theV proof which

returns (B, ?). S then veri�es the proof calling (verify, ;, ?, B) on

behalf of each V8 and generates "′8 and f
′
Vğ

in a straightforward

way. S aggregates all the signatures from V using Fsetup and gener-

ates f′agg and forwarded to Alice using Fconstruct’s User response

function. S creates CG� = (f′
�
, "′, ?:�, FIRST_FEE), where "

′
=

(M�, "agg, "
′
agg),"

′
agg = (f′agg, "

′
1, . . . , "

′
=, ?:V1

, . . . , ?:VĤ
),Magg =
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(fagg, "1, . . . , "=, ?:V1
. . . ?:VĤ

), and FIRST_FEE is retrieved by

sending (A4CDA=�44) request to Fsetup. S sends (B83, invoke, CG�) to

Fbc calling smart contract with (�.83 . CG� will get added to the

txpoolTable. While the CG� is in the pending pool, the adversary

can try to delay CG� from being mined by submitting transactions

with higher fees than CG� , while the adversary generates a validV

proof. We point out that the adversary will need to submit enough

transactions with higher fees so that CG� does not appear in any of

the blocks before adversary has a validV proof, which would re-

quire an exorbitant amount of fees just like in the real world. When

CG� eventually gets mined and added to a block, it will appear in

bcTable with the corresponding blockNum and if an adversary’s

valid transaction did not get mined before Alice’s then Alice did

not get frontrunned (this step is implicit in all the following game

hybrids). The 2>34 associated with (�.83 checks that the fagg and

f′agg are signed by majorityV, 1;>2:2DAA signed in fagg is valid, and

that the ℎ�
?
= � ("�). If any of the checks fail, the smart contract

returns §, else outputs a valid transaction CG ′.

2) Case 1: Alice, C are honest, some veri�ers are corrupt

a) Real-world: Honest C generates ; ←$ P. Corrupted veri�ers

can either: 1) deliberately fail Alice’s signature veri�cation (Step 4 of

Protocol 6), or 2) create a bogus signature over a possibly incorrect

message (Steps 5, 6 of Protocol 6). In both cases, the corrupt veri�ers

inV′ will not contribute towards fagg, since the C needs a majority

to abort the process and return § (Step 18 of Protocol 6). As long as

we have a honest majority inV, honest C will create and return fagg
to Alice, who will then evaluate the VDF and generate (c,~), and

send (c,~) to all members of V. Similarly, during the generation of

f′agg, C can ignore the inputs from V′. C sends (Magg, 1;>2:2DAA )

to Alice. Honest Alice eventually outputs CG� . Z’s view will be

(;, f�, ℎ, ?:�, c,~, CG�, 1;>2:2DAA , ??, C1, C2, U).
8

b) Ideal-world: S needs to simulate the actions of C and Alice

to Z. S creates "� , creates hash ℎ� = � ("�) and calls Fsetup
and gets f� . It then forwards (req, ℎ�, f�) to Fconstruct and re-

ceives “success” and (req, aliceID, ℎ�, f�). S picks an ; ←$ P, calls

Coordinator request function in Fconstruct, and sends ; toZ. If

members of V′ return § for Alice’s signature veri�cation or re-

turn bogus signatures from V′ (S can check these using Verify

function call in Fsetup), S ignores them, since |V′ | < |V|/2. S

then calls Fsetup’sAggregate Signature function with (Aggregate,

"1, . . . , "=, ?:1, . . . , ?:=, f+1
, . . . , f+Ĥ ) to aggregate all honest ma-

jority V’s signatures. Fsetup returns fagg to S. S then calls Fvdf to

generateV proof (B, ?). S sends (;, ?, B) toZ. Members of V′ will

send {f′8 }8∈V′ to S. S will simulate signatures for members of (V−

V
′) in a straightforward way and calls Fbc’s getBlockNum() func-

tion to get the 1;>2:2DAA ← +=D<CG/1;>2:@C~, value. S generates

the f′agg similar to the previous fagg, by taking the majority signa-

tures. Since members ofV′ will be in a minority, even if they return

§, it will not a�ect the creation of f′agg. Finally S generates Alice’s

signature over"′, creates CG� and submits it to Fbc. The view ofZ,

who controlsV′ will be (;, f�, ℎ�, ?:�, ?, B, CG�, 1;>2:2DAA , ??, C1, C2, U)

3) Case 2: Alice, all veri�ers are honest, C is corrupt

8We note that Z always has access to all the BC data: In the real world Z can query
a full node, run a light node, etc. In the ideal world, Z can send a getData( ) request
to Fbc . Without loss of generality, we say the Z’s view includes 1;>2:ęīĨĨ because
a given 1;>2:ęīĨĨ is only tied to the current request and signi�es the current block
number on the BC when the VDF request was received by the veri�ers.

a) Real-world: On receiving VDF request from Alice, corrupt

C could either pick ; ←$ P which has already been assigned to

another user or an ; ∉ P, in this case the honest members of V

identifying the C as corrupt, will not generate an accept message

which can be aggregated by the C and the C cannot proceed. If the

C had picked ; ←$ P correctly, on receiving the accept messages

and signatures from V, C can still choose to create fagg that would

fail veri�cation, in this case Alice’s checks would fail, identifying

the C as corrupt and she would not proceed further with the pro-

tocol. If the C had created fagg correctly, Alice would generate

the V proof and send it for veri�cation to all V. Upon veri�ca-

tion, V send their replies to C for aggregation. Like the previous

aggregation step, if the C creates a corrupt message in this step,

Alice would be able to identify the C as malicious. If the C sends

Alice a valid f′agg, Alice eventually outputs CG� .Z’s view will be

(;, f�, ℎ, ?:�, c,~, CG�, 1;>2:2DAA , ?? ,C1, C2, U , f+ğ , M8 , f+ ′ğ , "
′
8 ) for

8 ∈ [1 . . . |V|].

b) Ideal-world: S needs to simulate the actions of V and Al-

ice to Z. Z picks an ; ←$ P, and sends to S. S sends (;, aliceID)

to Fconstruct and if it received (used, ;) then ; has been used be-

fore and S would return § stopping the protocol. If Z picked

a valid ; , S simulates the operations of the honest V. S sends

each +8 ’s accept message to Z who creates an fagg by calling

Fsetup’s Aggregate Signature function call. S veri�es fagg before

proceeding, else return §. This is sent to S who simulates Al-

ice’s operation of computing the VDF, before simulating the mem-

bers of V’s response accepting Alice’s VDF proof computation,

and forwarding ("′1, . . . "
′
=, ?:1, . . . , ?:=, f

′
+1
. . . f′

+Ĥ
) to Z. If Z

does not aggregate the signatures from V correctly, and sends cor-

rupted/malformed f′agg to S, the signature veri�cation by S would

fail. Finally S simulates Alice’s signature over CG� and submits to

Fbc, i.e., (B83, invoke, CG�). The view ofZ, who controls C will be

(;, f�, ℎ, ?:�, ?, B, CG�, 1;>2:2DAA , ?? , C1, C2, U , f+ğ , M8 , f+ ′ğ , "
′
8 ) for

8 ∈ [1 . . . |V|].

4) Case 3: Alice is honest, C and some veri�ers are corrupt

a) Real-world: On receiving VDF request from Alice, corrupt C

could pick ; ←$ P which has already been assigned to another user

or an ; ∉ P, in this case the honest majority of V − V′ would not

generate a signature for C identifying the C. The corrupt V′ could

choose to generate accept messages and send them to C. The C can

create fagg using the corrupt V′’s accept messages but this would

fail veri�cation on when Alice receives fagg as |V
′ | < |V|/2. If the

C had picked ; ←$ P correctly, on receiving the accept messages

and signatures from V, C can still choose to create fagg that would

fail veri�cation, in this case Alice’s checks would fail, identifying

the C as corrupt and she would not proceed further with the proto-

col. If the C had created fagg correctly, Alice would generate theV

proof and send it for veri�cation to all V. Upon veri�cation, honest

membersV−V′, send their replies to C for aggregation. The dishon-

est members V′ could either choose to not send a valid “0224?C ′′

message for aggregation or choose to send a corrupt message for

aggregation. The C could choose to create a corrupt message by

aggregating less than |V|/2 messages or create a junk f′agg. Like

the previous aggregation step, if the C creates a corrupt f′agg in

this step, Alice would be able to identify the C as malicious be-

cause of the checks she does on receiving the messages from C.
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If the C sends Alice a valid f′agg, Alice eventually outputs CG� .

Z’s view will be (;, f�, ℎ, ?:�, c,~, CG�, 1;>2:2DAA , ??, C1, C2, U, f+ğ ,

M8 , f+ ′ğ ,"
′
8 ) for 8 ∈ [1 . . . |V|].

b) Ideal-world: S needs to simulate the actions of V − V′ and

Alice toZ.Z picks an ; ←$ P, and sends to S. If ; has been used

before, thenS would just return§ on behalf of honestV.Z can still

choose to create a fagg with V
′ accept messages but when this is

sent to S it would fail veri�cation since |V′ | < |V|/2. IfZ picked a

valid ; ,S simulates operations of the honest veri�ers and sends each

+8 ∈ {V−V
′} accept message toZ who creates an fagg. This is sent

to S who computes theV proof and sends toZ. S also send accept

messages from honest V toZ for C’s operations. Like the previous

aggregation step, Z could choose to create corrupt f′agg but this

would fail veri�cation when sent to S and the protocol would not

proceed further. To proceed further, Z has to create a valid f′agg
with the acceptmessages from > |V|/2members ofV. FinallyS sim-

ulates Alice’s signature over (f′agg, "�, "
′
1, . . . , "

′
=, ?:1, . . . , ?:=),

creates CG� and submits to Fbc. The view ofZ, who controls C and

V
′ will be (;, f�, ℎ, ?:�, ?, B, CG�, 1;>2:2DAA , ??, C1, C2, U, f+ğ ,M8 , f+ ′ğ ,

"′8 ) for 8 ∈ [1 . . . |V|].

5) Case 4: Alice is corrupt, C and all veri�ers are honest

a) Real-world: Alice sends aV request to C and V. A corrupt

Alice could choose to create a corrupt f� but this would fail ver-

i�cation at the C and V and the protocol would stop. To proceed

Alice has to compute valid (f�, ℎ). C and V would proceed as

normal and return a fagg to Alice. Alice could choose to send a

corruptV for veri�cation to V. Since veri�cation would fail there

would be no f′agg generated for Alice so she cannot proceed fur-

ther. If Alice computes a validV proof, C would return a f′agg to

her and Alice eventually outputs CG� . In CG� Alice could choose

to use a di�erent "′
�
but the hash of "′

�
would not match the ℎ

signed in fagg and would fail veri�cation in the smart contract

which checks ℎ matches "� , and the ; and ℎ in f′agg are tied to

"� . Alice can only pass smart contract veri�cation if she keeps the

original "� and valid Magg and M′agg in CG� . Z’s view will be

(;, f�, ℎ, ?:�, c,~, CG�, 1;>2:2DAA , ??, C1, C2, U, f+ğ , M8 , f+ ′ğ , "
′
8 ) for

8 ∈ [1 . . . |V|].

b) Ideal-world: S needs to simulate the actions of V and C

to Z. Z picks a "� and sends a request to C with hash ℎ cor-

responding to "� . S simulates C and V by assigning ; to ℎ and

generating a fagg. fagg is sent to Z who computes the V proof.

If Z decides to send a corrupted proof to S, then it would fail

veri�cation and S would not generate a corresponding f′agg. The

only way for Z to proceed is to compute valid V proof. Upon

receiving valid proof S veri�es it and generates f′agg which is sent

toZ.Z now creates CG� and submits to Fbc. The 2>34 associated

with (�.83 veri�es f′agg, the hash of "� included in CG� matches

(ℎ, ;, ·) in fagg, and the ; in previous tuple is same as in f′agg. The

code also checks for freshness using the 1;>2:2DAA value. If any of

these checks fail veri�cation then the smart contract would not

execute in favor of Z and it would be identi�ed as corrupt. Z’s

view will be (;, f�, ℎ, ?:�, ?, B, CG�, 1;>2:2DAA , ?? , C1, C2, U , f+ğ , M8 ,

f+ ′ğ
,"′8 ) for 8 ∈ [1 . . . |V|].

6) Case 5: Alice and some veri�ers are corrupt, C is honest

a) Real-world: As in Case 4, if Alice sends corrupt f� the C

would fail veri�cation and not proceed further. If the f� is valid, the

C picks valid ; and sends to all V. The corrupt minority of V′ could

choose to not send their signatures or send corrupt signatures which

the C can discard and generate a fagg from the honest majority

in V. Alice on receiving the fagg can choose to send an invalidV

proof which would not generate accept signatures from the honest

majority in V. V′ could choose to wrongly send accept signatures

to C but since |V′ | < |V|/2, C will not generate a f′agg. If Alice

computed a validV proof then she will receive a f′agg from C and

Alice eventually outputs CG� . As described in Case 4, Alice can

only pass smart contract veri�cation if she outputs a valid CG� .Z’s

view will be (;, f�, ℎ, ?:�, c,~, CG�, 1;>2:2DAA , ?? , C1, C2, U , f+ğ , M8 ,

f+ ′ğ
,"′8 ) for 8 ∈ [1 . . . |V|].

b) Ideal-world: S needs to simulate the actions of V − V′ and

C toZ.Z picks a"� and sends a request to C with hash ℎ corre-

sponding to"� . If ℎ or f� are invalid then S would not generate ;

and the protocol would stop. If valid request is received fromZ, S

assigns ; to ℎ and sends toZ. If V′ controlled byZ send corrupt

signatures to S, it can just ignore those messages and output a

fagg to Z by simulating the honest majority of V’s actions. If Z

decides to send corrupt proof to S, then it would fail veri�cation

and S would not generate a corresponding f′agg. As in previous

step, corrupt V′ messages corresponding toV proof fromZ can

be ignored by S. The only way for Z to proceed is to compute

validV proof. Upon receiving valid proof S veri�es it and gener-

ates f′agg which is sent to Z. Z now creates CG� and submits to

Fbc. As described in Case 4,Z can only pass smart contract veri-

�cation if CG� contains valid signatures and"� .Z’s view will be

(;, f�, ℎ, ?:�, ?, B, CG�, 1;>2:2DAA , ?? , C1, C2, U , f+ğ , M8 , f+ ′ğ , "
′
8 ) for

8 ∈ [1 . . . |V|].

7) Case 6: Alice, C are corrupt, all veri�ers are honest

a) Real-world: If Alice sends corrupt f� to the C and V, or

if Alice sends a valid request but C chose a corrupt ; similar to

Case 2, the V will not send accept signatures to C since the request

or ; will not pass veri�cation. The C can create corrupt fagg but

this would fail veri�cation eventually at the smart contract. If the

f� is valid and the C picks valid ; , the V will reply with accept

messages so C can generate a valid fagg. Alice on receiving the fagg
can choose to send an invalidV proof which would not generate

accept signatures from the V. Like the previous stage, the C can

create corrupt f′agg but this would fail veri�cation eventually at

the smart contract. If Alice computed a validV proof, the C would

receive accept signatures from the V and C can compute a valid

f′agg. Alice eventually outputs CG� . As described in Case 4, Alice

can only pass smart contract veri�cation if she outputs a valid CG� .

Z’s view will be (;, f�, ℎ, ?:�, c,~, CG�, 1;>2:2DAA , ?? , C1, C2, U , f+ğ ,

M8 , f+ ′ğ ,"
′
8 ) for 8 ∈ [1 . . . |V|].

b) Ideal-world: S needs to simulate the actions of V toZ.Z

picks a "� and sends to S, the hash ℎ corresponding to "� , f� ,

and ; . If ℎ or f� are invalid then S would not generate V signatures

for Z. Z can decide to proceed with the protocol by generating

a corrupt fagg but this would fail veri�cation in the 2>34 of the

(�.83 smart contract. If valid request and ; is received fromZ, S

sends V signatures to Z and Z can generate fagg. If Z decides

to send corrupt proof to S, then it would fail veri�cation and S

would not generate corresponding accept signatures fromV to send

to Z. Like the previous stage, the Z can create corrupt f′agg but
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this would fail veri�cation eventually at the (�.83 smart contract.

The only way forZ to proceed is to compute validV proof. Upon

receiving valid proof S veri�es it and generates V signatures which

are forwarded to Z. Z generates a valid f′agg, creates CG� , and

submits to Fbc. As described in Case 4, Z can only pass smart

contract veri�cation if CG� contains valid signatures and"� .Z’s

view will be (;, f�, ℎ, ?:�, ?, B, CG�, 1;>2:2DAA , ?? , C1, C2, U , f+ğ , M8 ,

f+ ′ğ
,"′8 ) for 8 ∈ [1 . . . |V|].

8) Case 7: Alice, C and some veri�ers are corrupt

a) Real-world: If Alice sends corrupt f� to the C and V, or

if Alice sends a valid request but C chose a corrupt ; similar to

Case 2, the honest majority V − V′ will not send accept signatures

to C since the request or ; will not pass veri�cation. The C can

create corrupt fagg but this would fail veri�cation eventually at

the smart contract. If the f� is valid and the C picks valid ; , the

honest majority V − V′ will reply with accept messages so C can

generate a valid fagg. Alice on receiving the fagg can choose to send

an invalid V proof which would not generate accept signatures

from the honest majority V − V′. Like the previous stage, the C

can create corrupt f′agg but this would fail veri�cation eventually at

the smart contract. If Alice computed a validV proof, the C would

receive accept signatures from the honest majorityV−V′ and C can

compute a valid f′agg. Alice eventually outputs CG� . As described in

Case 4, Alice can only pass smart contract veri�cation if she outputs

a valid CG� . Z’s view will be (;, f�, ℎ, ?:�, c,~, CG�, 1;>2:2DAA , ?? ,

C1, C2, U ,f+ğ , M8 , f+ ′ğ ,"
′
8 ) for 8 ∈ [1 . . . |V|].

b) Ideal-world: S needs to simulate the actions of honest major-

ity V −V′ toZ. As in Case 6, S will not send any accept messages

toZ when simulating the honest veri�ers ifZ sends corrupt f�
and ℎ on behalf of Alice and corrupt ; on behalf of the C. Z will

not be able to create valid fagg and f
′
agg since the honest majority

of veri�ers will be simulated by S. The only way forZ to proceed

is to submit valid ℎ, f� and ; to S and compute a valid fagg andV

proof. Upon receiving valid proof S veri�es it and generates V−V′

signatures which are forwarded to Z. Z generates a valid f′agg,

creates CG� , and submits to Fbc. As discussed in Case 4,Z can out-

put a corrupt CG� but the veri�cation checks in the smart contract

2>34 will fail.Z’s view will be (;, f�, ℎ, ?:�, ?, B, CG�, 1;>2:2DAA , ?? ,

C1, C2, U , f+ğ , M8 , f+ ′ğ ,"
′
8 ) for 8 ∈ [1 . . . |V|].

Let TXA represent the set of A’s transactions, TXZ represent

the set of Z’s transactions, TXS represent the set of S’s trans-

actions, and let CG� represent Alice’s transaction in the pending

pool, i.e., txpoolTable, respectively. Let the time elapsed since CG�
entered the txpoolTable be denoted by )� , the maximum miner fee

allowed per block by the blockchain system be blockMaxFee, let C1
be the time taken for computing a given VDF, and let P(A) denote

the power set of set A. Then the advantage of A in winning the

��'() game against Alice, i.e., Alice’s CG� getting frontrunned is

given by the following inequality:

AdvA,� �'() (_) f %A
[(

TX� =<8=( |X|);

X ∈ P((TXZ ∪ TXA ) ∪ (TXS \ {CG0}))
)

'
(

∀ CG ∈ TX�,
∑

CG .CG 5 44 ⪅ blockMaxFee
)

' ()� > C1)
]

.
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