2204.00955v4 [cs.CR] 15 May 2025

arxiv

FIRST: Frontrunnlng Resistant Smart ConTracts

Emrah Sariboz, Gaurav Panwar, Roopa Vishwanathan, Satyajayant Misra
{emrah,gpanwar,roopav,misra}@nmsu.edu
New Mexico State University
Las Cruces, NM, USA

ABSTRACT

Owing to the increasing acceptance of cryptocurrencies, there has
been widespread adoption of traditional financial applications such
as lending, borrowing, margin trading, and more, into the cryptocur-
rency realm. In some cases, the inherently transparent and unregu-
lated nature of cryptocurrencies exposes users of these applications
to attacks. One such attack is frontrunning, where a malicious entity
leverages the knowledge of currently unprocessed financial trans-
actions and attempts to get its own transaction(s) executed ahead
of the unprocessed ones. The consequences of this can be financial
loss, inaccurate transactions, and even exposure to more attacks.
We propose FIRST, a framework that prevents frontrunning, and as
a secondary effect, also backrunning and sandwich attacks. FIRST
is built using cryptographic protocols including verifiable delay
functions and aggregate signatures. We formally prove the secu-
rity of FIRST using the universal composability framework, and
experimentally demonstrate its effectiveness using Ethereum and
Binance Smart Chain blockchain data. We show that with FIRST,
the probability of frontrunning is approximately 0.00004 (or 0.004%)
on Ethereum and 0% on Binance Smart Chain, making it effectively
near zero.

KEYWORDS

Frontrunning Prevention, Smart Contract Security, MEV Mitigation,
Transaction Ordering Fairness.

ACM Reference Format:

Emrah Sariboz, Gaurav Panwar, Roopa Vishwanathan, Satyajayant Misra.
2025. FIRST: Frontrunnlng Resistant Smart ConTracts. In Proceedings of
ACM Conference (Conference’21). ACM, New York, NY, USA, 18 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

The decentralized, trustless, and censor-resistant nature of Ethereum,
along with its support for smart contracts, has enabled a wide range
of financial applications and has created the Decentralized Finance
(DeFi) ecosystem, which is worth more than 75 billion USD as of
December 2024 [2]. With the recent developments, many real-world
financial products such as money lending and borrowing, margin
trading, exchange platforms, derivatives and more, are being made
available to the blockchain users via smart contracts [1, 11, 38].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’21, July 2021, Virtual

© 2025 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Mallory Alice MemPool Block

1. Submits tx,

2. Detects tx,

Figure 1: Steps involved in a frontrunning attack.

Unfortunately, the absence of regulations allows malicious actors
to adopt and employ dubious practices from traditional finance
within the cryptocurrency ecosystem.

In finance, frontrunning is an act of purchasing stock or other
securities right before a large (whale) transaction owing to access
to non-public information. By doing so, one can take advantage
of the outcomes of large unprocessed transactions to be executed
after a later time than one’s own. Frontrunning has been classified
as illegal by monitoring entities, such as the U.S. Securities and Ex-
change Commission (SEC) and principally prevented by extensive
regulations [28]. In permissionless chains such as Ethereum, trans-
actions that do not utilize private relayers like Flashbots [30] or
directly interact with validators to obscure their details are publicly
visible in the pending pool (or mempool) before being processed.
This visibility allows adversaries, such as Mallory, to monitor the
peer-to-peer (P2P) network for potentially exploitable transactions.
For example, when an honest user, Alice, submits a transaction tx4
with a gas price of G4, Mallory can craft a competing transaction
txp; with a higher gas price Gy, where Gyr > G4, ensuring txp
is prioritized and included in the next block before tx4. Figure 1
illustrates a typical frontrunning attack.

Examples of frontrunning attacks can be seen on various de-
centralized applications (dApps). The first and most prominent
attack vector is on decentralized exchanges (DEXes). DEXes are
exchange platforms built on smart contracts that enable users to
exchange assets without the need for an intermediary [32]. Unlike
centralized exchanges, where users wait for their buy/sell orders
to be fulfilled, most DEXes—e.g., Uniswap [38]—use an automatic
pricing mechanism known as an Automated Market Maker (AMM)
to perform instant trades. A frontrunner can perform attacks with
highly predictable results due to deterministic pricing mechanism
as well as the transparency of liquidity amounts of decentralized ex-
changes. In this context, Qin et al. estimated a profit of 1.51 Million
USD made by frontrunners [32]. Other domains that are affected
by frontrunning attacks include (but are not limited to) gambling
[22], bug bounty programs [16], smart contract exploits [37], and
clogging [32], which emphasizes the threat and the need for miti-
gation. In this work, we aim to mitigate frontrunning attacks on
blockchains that support smart contracts such as Ethereum, but
without modifying the blockchain’s underlying infrastructure. The
core idea behind FIRST is to prevent Mallory from frontrunning
Alice’s transaction, tx4, with her own transaction, txy, by ensuring

12pL(Q U01INIAXY

that tx 4 is included in the block before tx);. We introduce a novel
approach to achieve this by leveraging Verifiable Delay Functions
(VDFs) to impose a delay on txys [13]. Specifically, FIRST requires
Mallory’s transaction to wait for a predetermined amount of time,
during which the VDF is evaluated, before it can interact with the
dApp implementing the frontrunning protection. Once Mallory
completes the VDF evaluation, she generates a proof that is then
verified by a set of verifiers. Transactions that fail to be verified by
the verifiers are rejected from calling the smart contract function.

Importantly, FIRST is not limited to a specific application and
can be employed by various dApps, such as auctions, decentralized
name services, NFT marketplaces, and others that are susceptible
to frontrunning attacks. FIRST helps protect users from frontrun-
ning and backrunning attacks, and consequently from sandwich
attacks as well [44]. FIRST operates entirely at the application layer,
requiring no changes to the underlying blockchain or its consensus
protocol, thus requiring no changes to the blockchain framework.
The specific FIRST transactions require an additional amount of
verification by the validators (miners), which is incentivized by the
framework to ensure the transactions are picked up to be verified
and added to the chain.

Our novel contributions are as follows: a) We propose Fron-
trunnlng Resistant Smart ConTracts (FIRST), a general-purpose so-
lution to the frontrunning problem using cryptographic protocols,
such as VDFs and aggregate signatures [15]. FIRST significantly
curtails frontrunning attacks in EVM-based blockchains while re-
quiring no changes to the underlying blockchain infrastructure.
As an application-agnostic solution, FIRST can be easily adopted
by any dApp. b) We discuss the effectiveness of FIRST and ex-
perimentally evaluate it using Ethereum and Binance Smart Chain
transaction data. ¢) We rigorously prove the security of FIRST using
the Universal Composability (UC) framework.

Paper Organization: In Section 2, we provide a concise explana-
tion of relevant preliminary concepts. Section 3 presents the system
model and threat model. In Section 4, we detail the construction
of FIRST and its constituent protocols. Section 5 offers a compre-
hensive security analysis of FIRST. In Section 6, we elaborate on
the implementation and evaluation of our system. We discuss the
design choices and limitations of FIRST in Section 7. We review
related literature in Section 8 and conclude the paper in Section 9.

2 PRELIMINARIES
2.1 Ethereum and DeFi

Bitcoin demonstrated blockchain technology’s potential by en-
abling direct transactions between untrusted parties without a
central authority. Ethereum expanded on this by introducing smart
contracts—self-executing programs on the blockchain that activate
when predefined conditions are met. Developed using languages
such as Solidity or Vyper, these transparent smart contracts have
led to the creation of dApps. Finance-related dApps have enabled
DeFi, which is an umbrella term that includes various financial
products (such as flash loans, asset management services, decen-
tralized derivatives, and insurance services) available to any user
with an internet connection in a decentralized manner [3, 10]. It
allows users to utilize financial products at any time. Additionally,
DeFi products enable end-users to employ them in a non-custodial

fashion, giving users complete control over their money, as opposed
to traditional financial services based on a custodial model.

2.2 Cryptographic Preliminaries

Verifiable Delay Function: A Verifiable Delay Function (VDF)
is a deterministic function f: X — Y requiring a fixed num-
ber of sequential steps, T, to compute, with efficient public ver-
ification [13]. While time-lock puzzles [21, 34] also enforce T se-
quential steps, they lack public verifiability and focus on encryp-
tion, making them unsuitable for applications like FIRST, where
proof of elapsed time is essential. Recent VDF constructions by
Pietrzak and Wesolowski [31, 42] address these limitations. We
adopt Wesolowski’s VDF [42] for its shorter proofs and faster veri-
fication. For a detailed comparison of these schemes, see [14], and
for the formal definition, refer to Appendix A.

Aggregate Signatures: An aggregate signature scheme allows the
aggregation of n distinct signatures from n users, each on a distinct
message of their choice, into a single signature [15]. Moreover,
it allows the aggregation to be done by any party among the n
users, including a potentially malicious party. By verifying the
aggregate signature, one can be convinced that n distinct users
have signed n distinct messages, which have been collected into
a single signature. FIRST utilizes this cryptographic primitive to
aggregate the verification results of a VDF proof.

3 SYSTEM AND THREAT MODEL
3.1 System Model

Parties: In our system, there exist four main entities. 1) A smart
contract SC that resides on the Ethereum blockchain. 2) Alice, who
is a legitimate user interacting with SC by creating a transaction
tx,4 that is potentially vulnerable to frontrunning attacks. Alice is
equipped with a verification/signing keypair (pka, ska). She eval-
uates a VDF instance, V, given to her by a set of verifiers. 3) A
set of verifiers V who generate and send the public parameters
of the VDF, V, to Alice and verify the evaluated V and its proof
of correctness that Alice submits to them. A coordinator C, is an
entity picked from the members of V by Alice to help aggregate
their signatures into a single signature. 4) Validators, whose goal
is to construct blocks and propose them to the network, validate
potential blocks received from other nodes, and process transac-
tions. Finally, dApp creator (dAC), who implements applications
such as auctions, exchanges, bug bounty programs, and Initial Coin
Offerings (ICOs) which are known to be targeted by frontrunning
attacks.

3.2 Threat Model and Assumptions

Mallory: We assume Mallory is an adversary who is computa-
tionally bounded and economically rational. Mallory is observing
the pending transaction pool for Alice’s transaction, tx4 on the
Ethereum network. Mallory will attempt a frontrunning attack as
soon as she observes tx4 on the pending pool by paying a higher
priority fee. We also take into account the case where more than
one adversary attempts to frontrun tx4. For ease of exposition, we
use Mallory to represent a group of adversaries.

Verifiers: Verifiers V are a set of entities not controlled nor owned

by the dAC. The protocol in its current version relies on the as-
sumption of an honest majority among verifiers to guarantee the
system’s proper functionality. The trust assumption in the verifiers
ensures that transactions are not subjected to unnecessary delays
from the malicious verifiers, thereby maintaining the liveness prop-
erty. In FIRST, verifiers do not have access to client details during
V verification, effectively precluding transaction censorship.
While we acknowledge the trust assumption in this version,
FIRST is designed with an intuitive plug-and-play framework that
seamlessly integrates projects like Eigenlayer. This integration
aims to minimize trust dependencies and align with Ethereum’s
renowned fault tolerance [36]. Eigenlayer offers Ethereum val-
idators the opportunity to restake their ETH, thereby extending
Ethereum’s security to additional protocols. Just as with Ethereum’s
PoS system, any lapse in ensuring protocol security results in a
corresponding slash of their stakes. Furthermore, we consider sce-
narios where a subset of malicious verifiers might attempt to leak
transaction details to Mallory, and demonstrate how FIRST prevents
such occurrences in Section 5.
Validators: We assume that the validators are greedy—they sort
transactions in descending order of priority fee and pick them in
an order that maximizes their profit. It is important to note that
in FIRST, verifiers do not have access to client details during V
verification, effectively preventing transaction censorship. They
can also re-order transactions to increase their profit and attempt
to frontrun victim transactions.
Coordinator: The coordinator is randomly chosen by Alice from a
set of verifiers V. It’s important to emphasize that while this entity
doesn’t need to be trusted for security purposes, it is essential for
ensuring liveness. We assume Alice actively monitors the trans-
action process. If any intentional delays are detected, Alice will
re-elect a coordinator and continue her interactions with the new
entity.
dApp Creator: We assume dAC will deploy SC and implement
it correctly. We also assume that dAC does not collude with any
other participant or with validators as it is in their best interest to
protect their dApp for business reasons. Furthermore, the inherent
transparency of smart contract code, which is accessible to the
public, acts as a safeguard against malicious intent. Moreover, we
assume that dAC has both completed the Know-Your-Customer
(KYC) process and undergone an audit for the protocol, providing
an added layer of deterrence against malicious attempts. While
KYC verification is predominantly utilized in centralized services,
there are companies like that offer this service for dApps [35]. KYC
verification ensures that in the event of any malicious actions by
dAC, the real-world entity behind it can be easily identified, thereby
enhancing the deterrent effect against potential malicious activities.
We do not discuss networking-related attacks as they are out of
the scope of this work; we refer the reader to relevant research [29].

4 THE FIRST FRAMEWORK

4.1 Overview of FIRST

The conceptual idea behind FIRST is to prevent Mallory (an at-
tacker) from frontrunning Alice’s transaction by ensuring that Mal-
lory’s transaction cannot reach the smart contract before Alice’s is
posted. To achieve this, FIRST requires every user interacting with

a FIRST-protected contract to compute a verifiable delay and wait
independently for a predetermined time #; before submitting their
transaction to the mempool. Importantly, FIRST does not impose
a global ordering or queue across users; each user’s delay is en-
forced individually. This mechanism guarantees that no transaction
becomes visible to adversaries until after the VDF commitment is
fulfilled.

The goal is to choose ¢; for a given time period/epoch, s.t. t; >>
ty, where ¢, is the expected wait time of the transaction of any
Alice in the mempool before getting posted on the Blockchain. This
ensures that, with high probability, Mallory cannot frontrun Alice’s
transaction that she sees in the mempool. The time t; depends
on several dynamic factors, namely transaction gas price, priority
fee, miner extractable value (MEV), and network congestion at the
time of submission, which makes an exact assessment of t, difficult.
Since the expected value of t; is the best can be done, there is a
chance of t; being less than the actual waiting time for Alice’s
transactions. Given that #; is difficult to predict, and a high ¢ is
detrimental to transaction throughput due to latency, what we do is
empirically arrive at a “reasonable” value for #;. FIRST continuously
monitors the blockchain data to identify the minimum priority fee
value that would result in a high likelihood of all FIRST transactions
waiting approximately t; time in the mempool. The t; wait time
is then fixed for a given epoch (higher than t;), ensuring that a
potential attack transaction has very low probability to frontrun
valid FIRST transactions. For our application of FIRST in Ethereum,
we set this epoch to be the same as the default Ethereum epoch of
32 blocks. The dAC obtains the value of #; via statistical analysis
of the relation between the priority fee of the transaction and
transaction confirmation time by monitoring the Ethereum network
continuously. Consequently, FIRST recommends an optimal priority
fee that significantly decreases the likelihood of transactions getting
frontrun. We detail how we perform such a statistical analysis in
Section 6.

4.2 Construction of FIRST

This section outlines the key components of FIRST, illustrated in
Figure 2, which consists of seven protocols. Steps 1-2 correspond
to the deployment of the smart contract on the blockchain and
the registration of verifiers with the dApp owner. After registra-
tion, each verifier independently generates a key pair. These steps
constitute the bootstrap phase of the system (Protocols 1 and 2).
Steps 3—4 represent the initialization of a transaction by Alice. She
prepares the transaction details and requests a VDF challenge from
the verifier set (Protocol 4). Step 5 shows the verifiers responding
with a unique VDF challenge—a prime [—which Alice must use to
compute the VDF (Protocol 6). Steps 6-8 cover the VDF evaluation
and verification phase (Protocol 5). Alice computes the VDF output
offchain and sends the proof to the verifiers, who verify its correct-
ness and sign the result. Step 9 corresponds to Alice submitting her
transaction, along with the signed proof, to the smart contract on
Blockchain (Protocol 7). The contract then verifies both the signa-
ture and VDF proof before executing the transaction onchain. For
simplicity, the computation of the recommended transaction tip,
FIRST_FEE, described in Protocol 3, is not visualized in the figure,
but it is applied before the final transaction submission.

- dApp Blockchain
Alice Creator Verifiers

-0
;

3. Set TX details ®
B,

[4. Get VOF 2
challenge i

=== =1* =| 5 Send prime | | = @
6. Compute VDF

VDF Compute

7. Send proof t-¥| @

. .

9. Submit TX @
>
8

Figure 2: Overview of FIRST.

We use Sign and Verify with no pre-pended string to denote
regular digital signature functions, whereas Agg.function() denotes
functions specific to the aggregate signature scheme. We use Verify
for both, signature and VDF verification, which will be clear from
context. Below we discuss each protocol.

Protocol 1: This is the bootstrap protocol of FIRST, and is exe-
cuted only once. It takes a security parameter as input and outputs
the smart contract SC and verification/signing keypairs for each
member of V. First, the dAC implements and deploys the dApp
on Ethereum. Entities sign up with the dAC to become verifiers.
Following deployment, each member of V generates their key pairs.
We note that <— denotes an assignment operation.

Protocol 2: The protocol is used to generate the system parameters
of FIRST. It takes in a security parameter and outputs the public
parameters (pp) of VDF V. In Line 1, each V; € V initializes its
list D; and U, used to keep track of values used in the VDF V’s
evaluation and verification, respectively. In Line 2, the dApp cre-
ator dAC initializes the number of steps T that will be used in the
evaluation of V. T is the number of steps required to evaluate the
VDF instance which results in a corresponding delay of t; units of
time. Next, dAC samples a negative prime integer d, which satisfies
d =1 (mod 4). These requirements ensure that when generating
the class group (CI) from d in Line 4, the resulting class group order
cannot be efficiently computed by any known algorithm [19, 42].

Currently, two approaches are known for setting up V: using
an RSA group of unknown order and using class groups of imagi-
nary quadratic fields [42] whose order is hard to determine. The

Protocol 1: System setup.

Inputs :Security parameter A.
Output: SC, (pk, sk) keypair for each member of V.
Parties : dApp creator (dAC), set of verifiers (V).
1 dAC implements SC and deploys it on Ethereum.
2 Each Vj; i € [1...n] generates
(pki, ski) « AgglKeyGen(l/l).

Protocol 2: Parameter generation.

Inputs :Security parameter A.
Output:pp.
Parties : dApp creator (dAC), set of verifiers (V).
1 Each V; € V, initializes lists D;, U; = [].
2 dAC picks T € Z*.
3 dAC <+ d, s.t., d is negative prime and d = 1 (mod 4).
4 dAC computes G « Cl(d) and output pp = (G, T)

RSA group approach requires a trusted setup when generating N
such that N = p.q where p and q are primes; in particular, p and q
need to be kept secret. On the other hand, a class group of imagi-
nary quadratic fields does not require a trusted setup and is used
by blockchains such as the Chia network in production [19]. We
use such groups to eliminate the trusted setup requirement in our
construction.

Protocol 3: The goal of FIRST is to provide users with frontrun-
ning resistant transactions. To achieve this, we introduce a novel
mechanism for computing a custom recommended fee, denoted as
FIRST FEE. Without FIRST FEE, users would have to rely blindly
on wallet or Etherscan-suggested priority fees or manually esti-
mate gas prices, exposing them to potential delay in transaction
inclusion, which increases their vulnerability to frontrunning or
may lead to unnecessary overpayment. The FIRST FEE helps in-
centivize faster pickup of the FIRST transactions, thus ensuring
their faster confirmation and lower latency. This protocol continu-
ously monitors blockchain transactions to analyze transaction wait
times and the associated priority fees paid, in order to calculate the
FIRST FEE. The a value passed as input to the protocol corresponds
to the weight of simple Exponentially Weighted Moving Average
(EWMA) calculation for FIRST_FEE inside the CalcFIRSTFee func-
tion.

The value of t; in Protocol 3 corresponds to the T value set in
Line 2 of Protocol 2. T is the estimated number of steps required by a
powerful machine (e.g. one with a modern desktop CPU) to compute
a VDF proof with t; delay. Most other less capable machines will
take longer than #; to compute the VDF. For each new block posted
on the blockchain, Protocol 3 calculates the average fee (fa04) paid
by transactions which waited less than t; time in the mempool
before being posted in the blockchain. The average value calculated
in the previous step is then incorporated into the FIRST_FEE value
using EWMA. The FIRST protocol enables the forceful change of an
epoch if the £ value needs to be updated before the current epoch
ends. For instance, when the number of transactions in the current
block waiting less than 3 time are statistically insignificant or cross
a predefined system threshold (in Protocol 3, temp;;s; == 0) we
initiate epoch change, and update the t; and #; values based on
the average waiting time across a set number of recent past blocks,
which can be a system parameter (10 blocks in our experiments).

We note that during the shift from a longer to a shorter delay
period (t1), FIRST momentarily halts transaction submissions. This
precaution maintains fairness between transactions with varying
VDF delays during the transition (t; to t7), safeguarding transac-
tions with extended VDF delays from being outpaced by those
with shorter ones. The pause ensures that all users who started

Protocol 3: FIRST recommended priority fee calc.

Inputs :Initial t;, &, and k (multiplication factor for t;).
Output:Recommended priority fee.
Parties : dApp creator (dAC).

1 function CalcFIRSTFee (FIRST_FEE,txj;s;):

2 tempyigy = [].

3 for tx in tx;s; do

4 if txwait time < to then

5 ‘ templist'append(txpriorityjee)~

6 end

7 end

8 if tempj;s; == 0 then

/* re-calibrate t; & t;. */

9 Initiate epoch change.

10 return
1 end
12 favg = average(tempy;g;).
13 if FIRST _FEE == 0 then

14 | FIRST_FEE = fuog.
15 end
16 else

17 ‘ FIRST_FEE = a X fqug + (1 —) X FIRST_FEE.
18 end

19 function main():
20 FIRST _FEE = 0.
21 t1 =k X to.

22 while True do

23 if New block with tx;;s; transactions is posted on BC
then

24 CalcFIRSTFee(FIRST_FEE, txj;s;)-

25 if Current epoch ended then

26 Update ty if needed, set t; = k X t3 and

update T to correspond t1.

27 end

28 end

29 end

Protocol 4: Transaction detail generation.

Inputs :addr, fname, addrsc.
Output: Secret message My, h, Signature o4.
Parties : set of verifiers (V), user in system (Alice).
1 Alice generates message
My = (addra, foame, addrsc, inputsc).
2 Alice generates hash of Mu, h = H(Mj4), and signs it:
o4 < Sign(ska, h).
3 Alice sends (h,04) toeach Vj; i€ [1...n],n=1V]|,
including the V; she picks as the coordinator C for
signature aggregation.

their transaction setup under the old #; finish their VDF evaluation
correctly before the new t] becomes active. Without a pause, ad-
versarial users could strategically delay their transaction request

Protocol 5: User-Verifiers interaction.
Inputs :04, b, pp.
Output: VDF output y, VDF proof 7.
Parties : user in system (Alice), set of verifiers (V) including
coordinator C.
1 On receiving (o4, h) from Alice, C € V picks prime [< P
and sends (h,[) to V' \ C.
2 for each V; € V do

3 if [¢ D; and! ¢ U; then
4 if true « Verify(pka, h, 04) then
5 M; = (I, h, V;, blockcyrr).
6 oy, < Agg.Sign(sky;, M;).
7 Add (1) to D;j.
8 Send (M;, oy;) to C.
9 end
10 end
11 end
/* Sig. aggregation and evaluate V */

12 C checks if each Agg.Verify(pk;, M;, ov;) 2 true. I majority
of members of V return L, C returns L to Alice. Else C
does Oagg Agg.Aggregate(M, ..., Mj, oy, ..., crvj),
where j > |V]/2.

13 C creates Magg = (0agg, M1, . .
Magg to Alice.

12 Alice checks if
Agg.AggregateVerification(cagg, M1, . . ., Mj, pk1, ..., pkj)

.»Mj, pky ... pk;j) and sends

L true, and if Verify (pki, pp, opp,) 2 true where

i€{l...j},and j > |V]|/2. If both return yes, Alice

computes (1,y) <« V.Eval(pp,). Else returns L and retry.
15 Alice sends (7, y) to all members of V.

to fall after the adoption of #] to benefit from the reduced delay
parameter, which violates fairness guarantees.

Protocol 4: This protocol is used to generate transaction details
of FIRST’s users. It takes as input Alice’s transaction details and
outputs a message, its digest and a signature over the digest; the
latter two are meant to be given to V. In Line 1, user Alice constructs
a tuple, My, with the transaction details, including her Ethereum
address addry, the dApp smart contract address that she intends
to submit a transaction to, addrsc (that dAC created), and the
name of the function that she intends to invoke to trigger the
smart contract SC, fhame. We assume she has a verification/signing
keypair (pka, ska), using which, in Line 2, she creates and signs
a digest of My. Using the cryptographic hash of the transaction
details prevents the leakage of any detail that may help a potential
frontrunner. Alice sends the digest of M4 (h) and her signature over
it (c4) to each Vj; i € [1...n]. Alice chooses coordinator (C) from
V to help with signature aggregation in Protocol 5 and Protocols 6.
Protocol 5: This protocol must be executed between Alice and
members of V. It takes as input the output of Protocol 4, i.e., the
digest/signature over Alice’s message. It outputs the evaluation of
the VDF instance, V, and its corresponding proof. In Line 1, the
coordinator C samples a unique (per user) prime [from a set of
primes P that contains the first 224 primes. We require each V; to

Protocol 6: VDF verification and tx submission.
Inputs :7,y.
Output: Aggregate signature o,,,, transaction tx4.
Parties : user in system (Alice), set of verifiers (V).
/* Each verifier runs proof verification */
1 for each V; € V do

2 if [¢ U; and | € D; then

3 Add [to Uj.

4 if “accept” « V Verify(pp, I, y, =) then

5 M] = (“accept”, Vi,).

6 d{,i — Agg.Sign(sky,, M}).

7 Send (M, O"//i) to C.

8 end

9 end
10 end

/* Sig. aggregation and submit tx. */

1

oy

”
C checks if each Agg.Verify(pk;, M], a(,i) = true. If majority
of members of V return L, C returns L to Alice. Else C
does o;gg — Agg.Aggregate(M, .. M]’ a{,l, .. .,cr{,j),
where j > |V]|/2.
12 C creates M;gg = (O';gg, M{, o M]’.,pkl, ..., pkj) and sends
to Alice.

13 Alice checks if Agg.AggregateVerification(opg,, Mj, ..., M]’.,

g8’
pki,....pkj) 2 true and j > |V|/2, if yes, Alice creates
M’ = (Mg, Magg,M;gg) and signs it, 01'4 « Sign(ska, M").
Else returns L and retry.

14 Alice retrieves the current recommended priority fee
(FIRST_FEE) from Protocol 3.

15 Alice creates and submits transaction
txa = (o', M’, pka, FIRST_FEE).

independently check [and verify that it was not generated before
(Lines 2, 3).

Upon checking the validity of I and Alice’s signature, each V;
creates a message M; by concatenating [, blockcy,r, and h from
Protocol 4 to its id and signs M; (Lines 5, 6). Vs freshness blockcyrr,
which represents the block height at the time of request is included
in M; to prevent off-line attacks on V. For an off-line attack, Mallory
requests [and pre-evaluates the V to submit the frontrunning
transaction when the victim transaction is seen on the network.
However, the smart contract eliminates this attack by verifying the
freshness of V. In Line 7 and 8, each V; € V updates their D; to
keep track of used I values and sends their o; to C. The list D; is
used to ensure that no user in the system has been given the current
[for V computation, else colluding users can reuse proofs. The list
Ui is used to ensure that users in the system can only use a given
I once, hence thwarting any replay attacks. In Lines 18 and 19, C
verifies the signatures of verifiers, aggregates them, and sends the
aggregate signature to Alice for verification. We note that both D
and U are public lists.

The goal of the aggregate signature scheme in FIRST is to cut
down the cost of verifying each V;’s signature individually. More-
over, we can obtain aggregate signatures from all members of V

Protocol 7: Signature validation and SC execution.

Inputs :txa, blocknoy and threshold.
Output:Smart Contract Functionality.
Parties : User in system (Alice), Smart Contract (SC).
1 Parse txy = (0, M’, pka, FIRST_FEE),
M’ = (MA’ Magg’ M;;gg),
Magg = (0agg, M1, ..., Mj, pk1, ..., pkj), and

Me’lgg = (aégg, M{, . ..,M]’.,pkl, ..., pkj), where j > |V|/2.

2 if (H(addra, frame, addrsc, inputsc) = h) and (
(L h, -, blockcyrr) € [My,...,M;]) and
(Caccept”, -, 1) € [M{,...,M]'.])and (IMy, ..., Mj| > |V|/2)
and(|M’,...,M}| > |V|/2) then

3 if Agg.AggregateVerification(o}eg, M, .. M]’
pki,....pkj) z true then

4 if blockyoww — blockeyyr < threshold then

5 ‘ SC executes the intended functionality.

6 end

7 end

s end

without requiring any trust assumption on them. We refer inter-
ested readers to [15] for further details on the aggregate signature
scheme. Alice checks the validity of 03¢ and the number of received
messages j, where j > |V|/2. If both return true, Alice retrieves
and verifies the public parameters of V, pp, and starts the evalua-
tion of V (we recollect that per our system model, Alice evaluates
V). During the evaluation, Alice generates output and proof of
correctness 7, which is sent to all members of V (Lines 20, 21).

Protocol 6: Protocol 6 is required to be executed between Alice
and V. It takes as input the VDF evaluation result and its proof
(given as output by Protocol 6), the pp of V' and outputs Alice’s
transaction tx4 to be submitted to SC. In Line 2, every V; € V first
checks if I ¢ U;. This check ensures that Mallory is not reusing the /
to evaluate V. Each V; also checks if [€ Dj, to check if [has indeed
been assigned to a user. If the check returns true, every V; € V adds
I'toU;.InLine 4, every V; € V verifies the VDF proof 7 sent by Alice.
Depending on the outcome of the verification, each V; creates Mi’
and signs it (Lines 5, 6). Upon completion of the verification phase,
in Line 17, C first verifies each o] and aggregates the signatures
into a unique signature 074, In Line 18, C creates a tuple Mg,
containing the a;gg, distinct messages of members of V, their public
keys, and sends it to Alice. Alice checks the validity of o{igg and the
number of received messages j, where j > |V|/2, for a majority of
verifiers from V. ! If both return true, Alice creates M’ consisting
of her message, My from Protocol 4, Magg from Protocol 6, and
M;gg from Protocol 5. Alice signs it before creating transaction tx4,
sets the transaction fees (FIRST_FEE from Protocol 3 and current
Ethereum base fee), and submits the transaction (Lines 19, 20, 21).
Protocol 7:This protocol is used to validate the transaction tx4,
V’s verification details, and the signature aggregation. Alice creates

The number of messages received by Alice in Protocol 6 and Protocol 5 are both
denoted by j, but we note that the value of j in both protocols need not be exactly the
same, as long as it satisfies the property j > |V|/2.

and submits tx4 with recommended fee. SC parses tx4 to access
necessary fields. SC verifies transaction details committed to in Pro-
tocol 4, verifies the messages of verifiers and checks if the number
of participants in the verification phase is more than |V|/2. Finally,
SC will check the given V’s freshness by checking if the difference
between the block height at the time of request and the current
lies within a pre-defined system threshold that should be adjusted
by dAC. We note that SC examines all messages and employs the
blockcyrr value endorsed by the majority to validate the freshness
of VDF, rather than relying on single blockcyrr. The SC will abort
the function execution if any check fails.

5 SECURITY ANALYSIS OF FIRST

5.1 Informal Security Analysis

In this section, we analyze the security of FIRST informally by
considering potential attack scenarios and describe how FIRST
eliminates them.

Malicious Verifier: In this attack, an adversary might try to cor-
rupt some members of V, and try to glean information about Alice’s
transaction tx4 while she computes the VDF. FIRST accounts for
this by having Alice conceal all transaction details by hashing them
and sharing only the digest with the verifiers (Protocol 4, Steps 2-3),
thus preventing any leakage of sensitive information. The general
security guarantees apply for the case where a malicious verifier
attempts to frontrun Alice.

Proactive Attacker: Consider a scenario where Mallory or a bot
she created is monitoring the pending transaction pool to identify
a transaction tx4 submitted by a user Alice. Let ¢ represent the
time Mallory first sees tx4, with a gas price G4, on the pending
pool. Mallory creates a transaction txys with gas price Gy where
Gpr > G4. We note that, in order for this attack to succeed, txyy is
required to be included in the previous or in the same block but
before tx,4. To address this, FIRST assigns ‘V related parameters and
updates them regularly using the empirical analysis we describe
in Section 6. Since all valid transactions need to wait for FIRST
stipulated time delay (V delay), txps will need to wait to generate
valid V proof. If Alice paid the FIRST recommended priority fee,
tx4 will wait for at most ¢, time in the pending pool, and since t;
is less than the V delay set by FIRST (1), Alice’s transaction will
not get frontrun by Mallory with high probability.

Backrunning and Sandwich attack: Backrunning is another at-
tack strategy where Mallory creates a transaction txy; with a gas
price of Gpr where Gpr < G4 to take advantage of the outcome of
Alice’s transaction [32]. Given the enforced V delay, the malicious
transaction attempting to backrun the victim transaction has to
wait before entering the mempool, which prevents backrunning,
making it impossible for the attacker’s transaction to be scheduled
in the same block thus preventing frontrunning. Given both fron-
trunning and backrunning are prevented, sandwich attack is also
prevented [44].

Malicious Block Proposer: In Ethereum 2.0, the block proposers
are randomly chosen from active validators whose aim is to propose
a potential block for the slot they are assigned. As a result, they have
full control over inserting, excluding, and re-ordering transactions
akin to miners in the PoW version of Ethereum. A potential attack
can be frontrunning transaction inserted into the block by the

malicious block proposer. However, FIRST already handles this
case: if any transaction does not contain the aggregated signature
of V on the verification of V proof, the smart contract will reject
the transaction.

Impact on Blockchain Throughput: In EVM-based blockchains,
throughput is constrained by the block gas limit—30 million gas
on Ethereum—with new blocks produced roughly every 12 sec-
onds. Since VDF computation and verifier coordination are per-
formed entirely off-chain, only the final, verifier-signed transaction
is submitted on-chain. As a result, FIRST does not affect blockchain
throughput. Once submitted, a FIRST transaction behaves like any
other following the standard inclusion and confirmation processes.
Pre-computed VDF attack: Attackers may attempt to create fron-
trunning transactions in advance and broadcast them when they
see the victim transaction in the pending pool. We eliminate this
pre-computation attack vector by checking the freshness of the
VDF during smart contract execution (Line 4, Protocol 7). Specif-
ically, suppose the difference between the current block (where
the transaction is slated for execution) and the block height at the
time of the transaction request is greater than a pre-defined system
threshold, the transaction will be reverted. Verifiers may option-
ally charge a small fee for issuing a new prime [for the VDF to
create an economic disincentive against repeated VDF challenge
requests. Since verifier interaction occurs offchain, standard Web2
techniques—such as IP-based rate limiting or user-level quotas—can
also be applied to mitigate abuse.

5.2 Formal Security Analysis

We analyze the security of FIRST in the Universal Composability
(UC) framework [17]. To this end, we define an ideal functionality,
FFIRST, consisting of three functionalities, Fsetup, Fic, and Feonstruct
along with two helper functionalities Fig [17] and Fyqr [27]. We
assume that the optimal functionalities share an internal state and
can access each other’s stored data. We prove the following theorem
in the Appendix C.

THEOREM 5.1. Let Frrst be an ideal functionality for FIRST. Let
A be a probabilistic polynomial-time (PPT) adversary for FIRST, and
let S be an ideal-world PPT simulator for Frrst. FIRST UC-realizes
Frrst for any PPT distinguishing environment Z.

6 EXPERIMENTAL RESULTS AND ANALYSES

We evaluate the performance of FIRST on real Ethereum traces over
a month long period of observation. We analyze FIRST’s suggested
FIRST_FEE during our experiment and show the effectiveness of
FIRST in terms of the percentage of frontrunnable transactions in a
given time period.

A low percentage implies that transactions submitted during the
said time period with FIRST_FEE are seldom frontrun. The success
of FIRST is not only dependent on the FIRST system parameters,
namely k, alpha, and t2, but also on the system-specific network
dynamics. We replicate our analysis of FIRST over a non-EIP-1559
chain, Binance Smart Chain (BSC). In what follows, we discuss
details of our experimental setup, data gathering, and experimental
results.

Functionality 7y,
Miner p; requesting current d;: Upon receiving (RequestRound, sid) from p;, send d; to p;.
Adversary corrupting Miner p;: Upon receiving (corrupt, p;, sid) from A, if | H\ {p;} | > P/2 then set H := H \ {p;}, else return L.
Block hashing: When ctrTime == bcHashTime, 73, takes a set of tuples TXp such that TXp C TXp where TXp represents the set of
transactions in txpoolTable, and |TXg| = I. TXp is picked such that I = min(|X|,VX € P(TXp)) and Zg:l tx;.txfee < blockMaxFee
where P represents a power set function. 73, then adds blockNum to each tuple (e.g. tuple (tx, blockNum) V tx € TXpg) and moves
them to bcTable and sends to S and A. F, sets ctrTime = 0 and blockNum = blockNum + 1.
BC data request handling: 77, on receiving request (getData, sid) from user u, retrieves all data tuples from bcTable, txpoolTable,
and scTable, and sends to u, S.
BC block num request handling: 7. on receiving request (getBlockNum, sid) from a user return blockNum.
Initialization of BC: On receiving (init, sid, P, H, blockMaxFee, bcHashTime) from Z, initialize for each BC miner/validator p; € P
a bit d; := 0, sets blockMaxFee as the max fee limit for each block, sets current block hashing interval time as bcHashTime, sets
ctrTime = 0, and set blockNum = 0. Set H C P to be set of honest validators.
Smart contract deployment: 71, on receiving (sid, deploy, SC.id, code) from any node stores the tuple (SC.id, code) in an scTable
for later retrieval and execution. The code of SC.id will eventually call Fsetup to verify the hash of My, in hashTable and the aggregate
signature in sTable of some submitted transaction tx = (M, oy, SC.id, (aagg, Mi, ... My, pk1,. .., pkn), txfee) and check that majority
of My, ..., My, contain an (“accept”, -, -). If verification fails, then SC outputs a failure ¢x’, else it continues execution of the SC.id code
which will include verifying hash h of the submitted transaction M, and finally outputs a successful ¢x’.
Transaction request handling: 7. on receiving (sid, invoke, tx) stores the tx tuple in txpoolTable. If the tx is invoking a smart
contract SC.id, then Fy. retrieves the tuple (SC.id, code) from scTable. . executes code with the given tx and the output transaction
tx’ is generated. Both transactions are added to txpoolTable and also sent back to user u and S. All rows in txpoolTable are arranged
in descending order of tx fee at all times.
Miners stepping the time counter forward: Upon receiving message (RoundOK, sid) from party p; set d; := 1. If forall p; € H :
dj = 1, then reset dj := 0 for all p; € P and set ctrTime = ctrTime + 1. In any case, send (switch, p;) to A. The adversary is notified in
each such call to allow attacks at any point in time.

Figure 3: Ideal functionality for blockchain.

6.1 Data Gathering

In order to get the most accurate waiting times of transactions in
the pending pool, we deployed a Geth? full node (v.1.11.0) running
on an Amazon AWS Virtual Machine located in North Virginia.
The AWS node had an AMD EPYC 7R32 CPU clocked at 3.30 GHz
with 8 dedicated cores, 32 GB of RAM, 1.3 TB solid-state drive,
running Ubuntu (v.20.4). We also ran a beacon node using Prysm?
(v.3.1.2) software which is required to coordinate the Ethereum
proof-of-stake consensus layer operations. Once the deployed node
synced, we collected the data in the Geth node’s pending pool. The
data collected included transaction arrival times and the transac-
tions’ corresponding unique transaction hashes from block number
15665200 to block number 15886660%. For each collected transac-
tion from the confirmed blocks on the blockchain, we gathered
additional details such as block base fee, paid max priority fee, gas
price, and block confirmation time. Although the data is from Oc-
tober 2022, the transaction volume has remained stable since then
(see [9]), and Ethereum still lacks frontrunning protection at the
application layer, making the data relevant.

We used a machine with Apple M1 Max chip, 32 GB RAM, 1 TB
HDD, running macOS Monterey (v.12.6) to perform experiments
on the collected data. There were a total of 30.6M transactions for
the given block range (15665200-15886660), out of which, 24.34M
were Type-2 (EIP-1559) transactions and 6.26M were Type-1 (legacy,
non-EIP-1559) transactions. We analyzed the more common Type-2

Zhttps://github.com/ethereum/go-ethereum
3https://github.com/prysmaticlabs/prysm
“https://web3js.readthedocs.io/en/v1.2.11/web3-eth-subscribe. html

transactions, FIRST can also be used for Type-1 transactions. Out
of the total 30.6M transactions our node was able to detect the
wait time for 29.65M transactions. Since our node did not receive a
total of 944807 transactions (roughly 3.08%), we conclude that these
transactions were either never sent to the P2P layer because of the
use of relayers (e.g., Flashbots) or our node did not receive them
before their confirmation on the blocks due to network latency.
In practice, the dApp owner would deploy multiple full nodes to
collect the pending pool data, hence minimizing the chance of
missing transactions due to network latency. We deployed another
full Geth node in AWS in Singapore with the same software and
hardware specifications as the one in North Virginia. The intent
was to perform a comparative sanity-check on the transactions
copies recorded at two geographically diverse locations.

We computed the waiting times of transactions received by our
node by subtracting the transaction’s block confirmation time from
the recorded time when the transaction was first seen in our node’s
pending pool. The difference in waiting times of transactions in
the US and Singapore was very small. Across all the transactions
that we captured, the difference between the receipt times in the
US and Singapore was no more than 2 ns for any transactions.
Interestingly, our Singapore node also never received any of the
944807 transactions that were not seen by our US node, leading us
to conclude that those transactions were privately relayed.

6.2 Extension to non-EIP-1559 chain

Many Ethereum Virtual Machine (EVM) based blockchains, such as
Polygon and Fantom, have implemented the EIP-1559 patch. Despite

Functionality Fconstruct
User request: Upon receipt of tuple (sid, req, h, oy,) from a
user u with identifier uid, Fconstruct adds (uid, h, oy,) to uTable,
and returns “success” to u, and forwards (sid, req, uid, h, o,)
to Vand S.
User response: Upon receiving (sid, aggregated, oagg, uid)
from C, Fconstruct looks for a tuple (oagg, -, -) in sTable; if such
a tuple exists Feonstruct retrieves tuple ([, uid, -) from cTable,
constructs and returns tuple (sid, [, Oaggs " -) touid and to S,
else returns L to both.
User verification: Upon receiving (sid, verify, [, p, s) from
uid, Fueriy checks if (I, uid, “not-used”) exists in cTable; if
yes, updates tuple in cTable to (I, uid, “used”) and forwards
(sid,L,p,s) to each V; € V and S, else Frerify returns L to
Alice and S.
Coordinator request: Upon receipt of a message (sid, I, uid)
from C, Feonstruct checks if there exists a tuple (uid, b, 0y,) in
uTable. If not, return L to C and S. If (I, -, -) exists in cTable,
return (sid, fail, [) to C and S, if (I, -, “used”) already exists
in cTable, return (sid,used,l) to C and S. Else, Fconstruct
adds (1, uid, “not-used”) to cTable, Feonstruct retrieves (u, pky)
from idTable, constructs tuple (sid, valid, I, h, oy, pky,) and for-
wards to all V; € V and S.
Coordinator response: Upon receiving (sid, V;, m;, ov;)
from members of V, Feonstruct forwards (sid, Vi, m;, oy;) to
C and S.

Figure 4: Ideal functionality for transaction processing and
VDF construction.

the overall trend of EVM-based blockchains adopting EIP-1559, for
completeness, we also studied a non-EIP-1559 chain protocol. We
replicated our analysis on the Binance Smart Chain (BSC) which is
currently a non-EIP-1559 chain. We deployed a Geth node (v.1.1.17)
on AWS Singapore and recorded transaction wait times for 45K
blocks (23285229-23288229), totaling 5.29M transactions (statisti-
cally significant). Out of the 5.29M transactions, our node did not
receive 141157 (2.66%). In non-EIP-1559 chains, the gas price is used
to incentivize the validator to pick up a transaction. Hence, FIRST
uses gas price to calculate the FIRST_FEE in Protocol 3.

6.3 Aggregate Signature Implementation

To assess the cost associated with verifying FIRST transactions
via a smart contract, we implemented the aggregated signature
verification function [15] using the Solidity programming language
and deployed it within a smart contract.

We used elliptic curve pairing operations, such as addition, mul-
tiplication, and pairing checks introduced by Ethereum in the form
of precompiled contracts with EIP-197 °. In Ethereum, precompiled
contracts enable the deployment of computationally-intensive op-
erations at a lower cost compared to the users implementing them
on their smart contracts. Our implementation uses the alt_bn128
curve. We used the bn256° library (v.0) and the Go programming

Shttps://eips.ethereum.org/EIPS/eip-197
Shttps://pkg.go.dev/github.com/cloudflare/bn256

Table 1: GAS CONSUMPTION FOR AGGREGATE SIGNA-
TURE VERIFICATION ON SMART CONTRACT.

Number of Verifiers | Total Gas Consumption (gas units)
5 374423
7 474327
10 621180
15 871987
20 1122943

language (v.1.17.5) to implement the aggregate signature genera-
tion and verification schemes. Table 1 shows our results for the
verification of the aggregated signatures by the smart contract with
different numbers of verifiers. For example, it costs 621180 units
of gas for ten verifiers to verify the aggregated signature. Using
the median gas cost of 10 GWei (representative of current market
conditions as of December 2024) and the current Ether price of
$3300, the cost to verify the aggregated signature of 7 verifiers is
approximately $15.65.

A 2021 study found that frontrunning extracted approximately
$18 million across 200,000 transactions, or about $90 per trans-
action [37]. FIRST adds an overhead of $10-$15 per transaction,
mainly due to the on-chain signature verification. This cost rep-
resents a 15% premium per protected transaction. The primary
contributor to the cost is the pairing operations required for sig-
nature verification. Currently, EIP-197 is the only supported pre-
compiled contract for pairing operations on Ethereum, using the
alt_bn128 curve. This limited support contributes to the high gas
costs. While proposals like EIP-2537 aim to introduce more effi-
cient cryptographic primitives such as BLS12-381, they have not
yet been implemented on Ethereum mainnet as of May 2025. Once
adopted, these upgrades are expected to significantly reduce veri-
fication costs. In addition, designing efficient aggregate-signature
schemes is an area of continuing research—we anticipate that the
schemes to become more efficient in the future.

FIRST serves as a proof-of-concept demonstrating frontrunning
protection on EVM-compatible chains. Additional savings are pos-
sible using gas golfing’. We will assess that in the future. A note of
caution is that inline assembly is error-prone and a known source
of vulnerabilities in smart contracts [18].

6.4 Scalability of VDF

We assess the practicality of VDF on devices with varying compu-
tational capabilities by comparing the VDF computation times on
these devices. The VDF [42] used in FIRST has a complexity of O(T)
for VDF proof generation and O(log T) for verification, where T is
the number of steps required for proof generation.

For client-side costs experiments, we use a rack server, specifi-
cally the PowerEdge R650 Intel Xeon Gold 6354 with 18 cores and
36 threads per core, equipped with 256 GB RDIMM and NVIDIA
Ampere A2. Additionally, we evaluated the performance on an
iPhone 12 with an A14 Bionic 6-core CPU, 64GB storage, and 4GB
RAM, as well as the MacBook Pro. Detailed specifications for the
MacBook Pro used in our evaluation can be found in Section 6.1.
For this experiment, we choose the sequential steps amount (T) to

7Gas golfing refers to low-level optimizations such as inline assembly.

be 1 million whereas the bit length of security parameters to be
2048 bits. We give our results in Figure 5. While Figure 5 shows
that rack servers compute VDFs faster than other devices, the dif-
ference is not sufficient to enable successful frontrunning. This is
because no entity, regardless of computational resources, can see
the transaction details until after the user’s VDF computation is
complete and the transaction enters the pending pool. Even highly
resourceful devices do not have enough time to complete a new
VDF computation fast enough to frontrun, especially when the user
includes the optimized priority fee recommended by FIRST _FEE.

6.5 Analyses and Discussion

We plot Figure 6a and Figure 6b to demonstrate how FIRST recom-
mended fee changed over our observation period in Ethereum and
BSC blockchains, respectively. The figures show the recommended
fee (FIRST_FEE) on the Y-axes for the corresponding block number
on the X-axes, computed using Protocol 3. In both experiments,
k =3 and a = 0.6. For Ethereum t3 was 30s and for BSC it was 5s.
The FIRST FEE calculated on Ethereum refers to the recommended
priority fee, while on BSC, it refers to the recommended gas price.
In Figure 6a, the X-axis represents the 198K blocks on the Ethereum
blockchain. As seen from the graph, the highest spike in our recom-
mended fee is around block number 15697567. Some blocks have
an associated spike in the recommended transaction FIRST_FEE
due to the surge in the priority fees paid by transactions in the
prior blocks. For example, the sale of tokens for the popular NFT
project Art Blocks was confirmed in block number 15697567. Out of
the 446 transactions in this block, 405 purchased tokens using the
Art Blocks contract and paid much higher priority fee than other
network transactions. This affected the FIRST FEE for 15697568.
Similarly, the second-highest spike around block number 15741444
was due to the NFT project “BeVEE - Summer Collection” sales.
The X-axis in Figure 6b represents the 41K blocks on the BSC
blockchain. We see a spike in the FIRST fee for block 23298282
because four transactions indexed in the first four spots of the block
23298281 paid an average of 858.34 GWei in gas fee—escalating the
recommended FIRST fee. On analyzing the block, we believe that
the transactions paid high fee to profit from arbitrage opportunity.

VDF Evaluation Time (Seconds)
= I = =
E [«)] 0 o N B (o)}
o o o o o o o

N
o
!

Rack Server MacBook Pro iPhone 12

Figure 5: Comparison of VDF computation times across mul-
tiple devices.

Despite the unpredictable events in the Blockchain, Figures 6a
and 6b show that the computed FIRST_FEE adjusts to network
activities. In general, we noticed significantly less number of spikes
in BSC, compared to Ethereum. This is due to the fast confirmation
of transactions in BSC—more discussion at the end of this section.

To initiate our experiments, we obtained the 50th percentile
of the maximum wait time for the first 100 blocks and to better
handle system dynamism, set 3 to twice the value, to = 30secs. We
also analyzed the Ethereum data for « = {0.1,0.2,0.4,0.6,0.8} and
found that the & = 0.6 gives us better success rate than other values.
Note that despite the occasional spikes most transactions pay a low
priority fee, hence the value of « has limited impact.

For our analysis, we set k = 3, resulting in the VDF delay
t; = 90secs. To reiterate our use cases discussion (Section 7), the
VDF delay value is a function of the application and its risk appetite
and can be tuned in FIRST. Even with #; = 30secs, only 0.004%
of transactions were susceptible to frontrunning! We discuss this
below. Let tx; represent the i’ h transaction in a block (b), where
tx;.fee and tx;.ctime are the transaction fee and the duration tx;
waited on the mempool respectively, and T, represents the num-
ber of transactions in block b. Then, the fraction of potentially
frontrunnable transactions in b is given by,

31t [txi.fee > FIRST_FEE][tx;.ctime > t1]
T, ’

fr= (1)

where [.] indicates Iverson brackets such that [if,e > tipe] is true
(D ifipee = tipe, is false (0), otherwise.

We analyzed the Ethereum and BSC data for different values
of k. Figure 7 shows the percentage (fr x 100) of transactions
that are frontrunnable out of the total transactions (24.34M in
Ethereum and 5.14M in BSC) for different values of k. With the
VDF delay of 90s (k = 3) and the FIRST recommended fee, on the
Ethereum blockchain, 196319 out of 198235 blocks (> 99%) had
no frontrunnable transactions! With #; = 15secs (k = 3) and the
FIRST recommended fee per BSC block, in BSC none of the transac-
tions were frontrunnable. In fact, the percentage of frontrunnable
transactions goes to zero for k > 2. Our choice of k = 3 for the
data is a good balance between the success rate and the imposed
transactions delay.

As we discussed before, on Ethereum, the chance of transactions
being frontrun is a bit higher on account of higher volatility (we
theorize, due to NFT transactions and slower block confirmation
time) compared to BSC, which is more stable on account of the
faster settling of transactions. For example, from our data, in the
time it takes Ethereum to confirm one block, BSC confirms on an
average 4.4 blocks. Each Ethereum block in our dataset has on an
average 151 transactions, whereas it is 120 transactions in each BSC
block. Thus, 666 BSC transactions are confirmed in the same time
as 151 Ethereum transactions.

7 DESIGN CHOICES, COMPATIBILITY, USE
CASES AND LIMITATIONS
In this section, we explore potential alternative solutions and their

disadvantages, the design choices of FIRST, its compatibility with
other protocols, and the limitations of our work.

400 A

350 A

300 A

250 A

200

150 A

100 A

Recommended FIRST Fee (GWei)

50 4

i JI- wLl |l. sl

o

o
@
o

lock Num

(a) Recommended FIRST Fee for Ethereum.

80

70 A

60

50 -

Recommended FIRST Fee (GWei)

40
30
201
104 |
h.lJ;.iu-J n‘l| J||.4. ...IJ-LL-LI- 1 | .JI iy
0 — ——— y
5 ©° ©° Oo O O O O O O O .0
AL R U L I L S L A LS
Q> >)) Q Q Q " " v 7V v
02 2 0 D P S S B B B A S
A A A A, G, SR, AN, UG A A A ¥

Block Number

(b) Recommended FIRST Fee for BSC.

Figure 6: Recommended FIRST fee for Ethereum and BSC blockchains per block.

Verifiers: One might question the need for a VDF in the presence of
an honest-majority committee, which can be used to verify delays.
A verifier-based approach would require each verifier to maintain
a timer per request, which becomes infeasible as the transaction
volume scales. Moreover, such delays cannot be independently
verified. In contrast, VDFs are publicly verifiable and efficient to
check.

Compatibility with private transaction: The FIRST framework
is designed to protect the transaction from getting frontrun. Since
it does not change transaction structure, it is compatible with pri-
vate relayers, such as Flashbots [30]. The only requirement for a
transaction before its submission to the relayers is to include the
aggregated signature of V on the verification of “V proof (Protocol 5,
Line 20). The SC will assert if the transaction includes the aggre-
gated signature and rejects it if not present. FIRST independently

2

o 4

So25{ 1

5 ,

©

wn

c

£0.20+1 —e— Ethereum

o BSC

_g

c 0.151

c

3

2

E

f=

§ 0101

bl

5

&

20.054

|

[

g

= | *—e- .

gooof TEe—e—eeee
025 075 125 175 225 275 3.25 3.75 425 475

Values of k (t; = k x t3)

Figure 7: Percentage of frontrunnable transactions (Y-axis)
for different values of FIRST parameter k (t; = k X t3).

11

prevents frontrunning attacks on EVM-based blockchains without
needing extra protocols. While compatible with Flashbots, com-
bining them is redundant and could compromise security through
relayer delays.

Potential use cases: Ethereum Name Service (ENS) [4] aims to
map long and hard-to-memorize Ethereum addresses to human-
readable identifiers. Recent sale trends and exorbitant offers, such
as amazon.eth, which received a million-dollar offer [5], indicate
the importance of frontrunning prevention solutions. FIRST can be
used during the sale of these domain names to prevent frontrunning.
Non-fungible tokens (NFTs) are unique cryptographic tokens that
live on blockchains and are not possible to forge. One of the largest
NFT marketplace Opensea exceeded 10 billion dollars in NFT sales
in the third quarter of 2021 [6]. Not surprisingly, frontrunning
bots are watching the mempool for NFT sales to create a counter
transaction to frontrun. One can employ FIRST to prevent such
attacks on the marketplaces.

Compatibility with Time-Sensitive Applications: FIRST can
be integrated with time-sensitive dApps, such as DEXes and NFT
marketplaces, to prevent frontrunning attacks. When a platform
adopts FIRST, all user transactions experience a uniform VDF de-
lay, ensuring that transactions are properly time-shifted and fairly
ordered. The VDF delay can be tuned to balance responsiveness
and security, minimizing user inconvenience while maintaining
strong protection guarantees. In the event of a price discrepancy
between a FIRST-protected DEX and other exchanges, arbitrageurs
will naturally intervene to close the price gap, ensuring consistency
across platforms without undermining the protocol’s security.
Limitations: Adjusting the real-world delay time with the given
VDF delay parameter for every user’s computational capabilities
is a challenging and open-research problem [12]. While it is an
orthogonal task to ours, FIRST mitigates the problem by picking
the t; >> t» — this ensures that a more-capable Mallory cannot
frontrun a less-capable Alice. The VDF delay parameter is selected

based on observed transaction settlement times onchain and the
computational capabilities of high-end contemporary machines.
While not bulletproof, our analysis shows that over 99% of transac-
tions are no longer susceptible to frontrunning under FIRST.

Another limitation arises when an entity tries to re-submit a
pending transaction created to interact with the FIRST protected
protocol, perhaps with a higher gas fee. Since the transaction is seen
in the pending pool by all the entities, it increases the chances of
getting frontrun. Lastly, our framework does not support the inter-
action of two FIRST protected contracts, which we aim to address
in future work. We note that FIRST is a probabilistic solution as it
recommends a fee to be paid by the users in the system to avoid get-
ting frontrun with a high probability. However, as specified by the
advantage statement in our theoretical analysis, there is a chance
that a sufficiently funded and powerful adversary can outpace and
frontrun honest users. To successfully frontrun a target user, an
adversary not only needs commensurately larger computational
resources than the norm to compute the VDF proof faster, but the
adversary also needs to delay the target user’s transaction in the
mempool for the duration of time it takes to compute a valid VDF
proof by inserting other transactions with higher fees than the tar-
get. This is a high barrier even for a very resourceful adversary. This
is the price we pay for having an autonomous distributed system
with no central control. Achieving zero frontrunning probability
would require centralized transaction serialization, compromising
blockchain decentralization and scalability.

8 RELATED WORK

Current frontrunning research focuses on attack classification, prof-
itability analysis, and mitigation strategies. We describe each below.
Frontrunning prevention strategies: Research in frontrunning
prevention falls into three broad categories: (a) solutions that re-
quire direct interaction with miners to include the transaction in
the upcoming block (private relayer approaches) [30]; (b) solutions
designed for DEXs (protocol incentive design) [43, 44]; and (c) so-
lutions that prevent arbitrary reordering of transactions (order
fairness) [23, 24, 26]. In the first category, Alice sends txy4 directly
to miners via hidden endpoints to prevent adversaries from iden-
tifying her transaction in the pending pool. Flashbots [30] is one
example, where entities called relayers bundle and forward transac-
tions to miners through private channels. However, relayers them-
selves could perform frontrunning attacks as they have access to
the complete transaction details. The second category of solutions
is built for AMM-based DEXSs; it reduces the risk of frontrunning
by computing an optimal threshold for the frontrunner’s transac-
tion and routing the victim’s swap request to minimize potential
profit extraction. However, these solutions are specific to DEXs and
cannot be applied to other dApps such as auctions, naming ser-
vices, or games [22, 25, 43]. The third category of solutions is built
upon the order-fairness property, which ensures that the order of
transactions in the finalized block reflects the order in which users
submitted them [23, 24, 26]. These solutions require significant
changes to the consensus layer, making them impractical, while
our approach works with existing EVM-based blockchains without
modification.

Surveys of frontrunning and related mechanisms: Eskandari
et al. presented a taxonomy of frontrunning attacks and analyzed
the attack surface of top dApps [22]. Qin et al. [32] extended the
taxonomy of [22] and quantified the profit made by blockchain
extractable value [32]. Daian et al. [20] revealed frontrunning bots
competing in priority gas auctions and coined "Miner Extractable
Value" (MEV) to describe miners reordering transactions for profit.
[12] presented the state-of-the-art in frontrunning research and
proposed a categorization of mitigation strategies. Additionally,
Yang et al. developed a taxonomy of MEV prevention solutions and
conducted a comparative analysis of these approaches.
Profitability analysis: The profits made by frontrunners have
been quantified by Torres et al. [37] and Qin et al. [32]; the latter
also brought to attention the presence of private transactions sub-
mitted to miners. Zhou et al. [44] formalized and quantified the
profit made by sandwich attacks enabled by frontrunning on decen-
tralized exchanges. Qin et al. [33] analytically evaluated Ethereum
transactions’ atomicity, analyzed two flash loan-based attacks, and
demonstrated how attackers could have maximized their profit.
Wang et al. [41] proposed a framework that analyzes the profitabil-
ity conditions on cyclic arbitrage in DEXs.

There are a couple of prior works [16, 39] that do not fall into
any of the aforementioned three categories. LibSubmarine uses a
commit-and-reveal scheme to prevent frontrunning [16], where the
committer must create a new smart contract for every transaction
they submit to a dApp, which is inefficient. In a recent work, Varun
et al. [39] proposed a machine learning approach to detect trans-
actions that were frontrun in real-time. This approach requires
the machine learning model to learn regularly. Further, the ap-
proach does not take into account priority fee, hence could fail to
identify high priority fee based frontrunning transactions. There
are also works that are related to our proposed scheme, such as
Slowswap [7], which utilizes VDFs to introduce delays for transac-
tions related to AMMs only. However, the current implementation
employs a uniform VDF delay for all transactions, which is not
ideal given the dynamic nature of Ethereum. In contrast, FIRST
conducts statistical analysis and assigns VDF delay based on the
network usage. Another solution in the MEV mitigation space is
Radius [8], which also aims to prevent frontrunning and sandwich
attacks by implementing encrypted mempools. The Radius solution
requires a mempool redesign, limiting its applicability, whereas
FIRST integrates seamlessly with any EVM-based blockchain.

9 CONCLUSION

We introduced FIRST, a decentralized framework aimed at mitigat-
ing frontrunning attacks on EVM-based smart contracts without
necessitating changes to the blockchain consensus layer. Unlike
application-specific approaches, FIRST is designed as a versatile
and general-purpose solution, ensuring broad applicability across
diverse dApps. Experimental results show that FIRST effectively
reduces the likelihood of frontrunning attacks on two prominent
blockchains: Ethereum and Binance Smart Chain. Additionally, the
security guarantees of FIRST are rigorously established through the
UC framework. In the future, we will explore gas golfing and better
aggregate signature design to help reduce the gas fees needed for
on-chain signature verification.

10 ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Award No 2148358, 1914635, 2417062, and the
Department of Energy under Award No. DESC0023392. Any opin-
ions, findings and conclusions, or recommendations expressed in
this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation and the Department
of Energy.

REFERENCES

[1] dYdX, 2024-7-7. https://dydx.exchange/.

[2] DeFi Lama, 2024-12-08. https://defillama.com/chain/Ethereum.

[3] AAVE, 2024-7-7. https://aave.com/.

[4] Ethereum Name Service, 2024-8-12. https://ens.domains/.

[5] Amazon.eth ENS domain owner disregards 1M USDC buyout offer on OpenSea,

2024-8-12. https://cointelegraph.com/.

[6] More than $10bn in volume has now been traded on OpenSea in 2021, 2024-8-12.
https://yahoo.com.

] slowswap, 2023-8-12.

] theradius, 2023-8-12.

] Etherscan, 2024-7-9. https://etherscan.io/chart/tx.

] yearn.finance, 2024-7-7. https://yearn.finance/.

] Compound Finance, 2024-8-12. https://compound.finance/.

] Carsten Baum, James Hsin-yu Chiang, Bernardo David, Tore Kasper Frederiksen,

and Lorenzo Gentile. Sok: Mitigation of front-running in decentralized finance.

In International Conference on Financial Cryptography and Data Security, pages

250-271. Springer, 2022.

Dan Boneh, Joseph Bonneau, Benedikt Biinz, and Ben Fisch. Verifiable delay

functions. In Annual International Cryptology Conference. Springer, 2018.

Dan Boneh, Benedikt Biinz, and Ben Fisch. A Survey of Two Verifiable Delay

Functions. IACR Cryptol. ePrint Arch., 2018.

Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and

verifiably encrypted signatures from bilinear maps. In International conference

on the theory and applications of cryptographic techniques. Springer, 2003.

Lorenz Breidenbach, Phil Daian, Florian Tramer, and Ari Juels. Enter the Hydra:

Towards Principled Bug Bounties and Exploit-Resistant Smart Contracts. In 27th

USENIX Security Symposium, 2018.

Ran Canetti. Universally composable signature, certification, and authentication.

In Proceedings. 17th IEEE Computer Security Foundations Workshop, 2004., 2004.

Stefanos Chaliasos, Arthur Gervais, and Benjamin Livshits. A study of inline

assembly in solidity smart contracts. Proceedings of the ACM on Programming

Languages, 6(O0PSLA2):1123-1149, 2022.

Bram Cohen and Krzysztof Pietrzak. The chia network blockchain, 2019.

Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,

Lorenz Breidenbach, and Ari Juels. Flash Boys 2.0: Frontrunning in Decentral-

ized Exchanges, Miner Extractable Value, and Consensus Instability. In IEEE

Symposium on Security and Privacy (SP), 2020.

Karim Eldefrawy, Sashidhar Jakkamsetti, Ben Terner, and Moti Yung. Standard

model time-lock puzzles: Defining security and constructing via composition.

Cryptology ePrint Archive, Paper 2023/439, 2023. https://eprint.iacr.org/2023/439.

Shayan Eskandari, Mahsa Moosavi, and Jeremy Clark. Sok: Transparent dishon-

esty: front-running attacks on blockchain. Financial Cryptography, 2019.

Mahimna Kelkar, Soubhik Deb, and Sreeram Kannan. Order-fair consensus in

the permissionless setting. In Proceedings of the 9th ACM on ASIA Public-Key

Cryptography Workshop, 2022.

Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan.

Themis: Fast, strong order-fairness in byzantine consensus. In Proceedings of the

2023 ACM SIGSAC Conference on Computer and Communications Security, pages

475-489, 2023.

Rami Khalil, Arthur Gervais, and Guillaume Felley. TEX-A Securely Scalable

Trustless Exchange. IACR Cryptol. ePrint Arch., 2019.

Klaus Kursawe. Wendy, the good little fairness widget: Achieving order fairness

for blockchains. In Proceedings of the 2nd ACM Conference on Advances in Financial

Technologies, 2020.

Esteban Landerreche, Marc Stevens, and Christian Schaffner. Non-interactive

cryptographic timestamping based on verifiable delay functions. In International

Conference on Financial Cryptography and Data Security. Springer, 2020.

Craig McCann. Detecting Personal Trading Abuses, 2000. https://www.slcg.com/.

Michael Mirkin, Yan Ji, Jonathan Pang, Ariah Klages-Mundt, Ittay Eyal, and Ari

Juels. BDoS: Blockchain Denial-of-Service. In Jay Ligatti, Xinming Ou, Jonathan

Katz, and Giovanni Vigna, editors, ACM SIGSAC Conference on Computer and

Communications Security, 2020.

Alex Obadia. Flashbots: Frontrunning the MEV Crisis, 2024-7-7. https://medium

.com/flashbots/frontrunning- the- mev-crisis-40629a613752.

[15]

=
&

[22]

[23

[24]

[25]

[26]

[27]

[28
[29]

[30

[31] Krzysztof Pietrzak. Simple verifiable delay functions. In Innovations in theoreti-
cal computer science conference (ITCS). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2018.

Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying blockchain extractable
value: How dark is the forest? In 2022 IEEE Symposium on Security and Privacy
(SP). IEEE, 2022.

Kaihua Qin, Liyi Zhou, Benjamin Livshits, and Arthur Gervais. Attacking the
defi ecosystem with flash loans for fun and profit. In International Conference on
Financial Cryptography and Data Security. Springer, 2021.

Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and timed-
release crypto. Massachusetts Institute of Technology. Laboratory for Computer
Science, 1996.

solidproof. solidproof, 2024-7-7. https://solidproof.io/kyc.

EigenLayer Team. Eigenlayer: The restaking collective, 2024-7-7. https://docs.e
igenlayer.xyz/eigenlayer/overview/whitepaper.

Christof Ferreira Torres, Ramiro Camino, et al. Frontrunner jones and the raiders
of the dark forest: An empirical study of frontrunning on the Ethereum blockchain.
In 30th USENIX Security Symposium, 2021.

Uniswap. Uniswap, 2024-8-12. https://uniswap.org/.

Maddipati Varun, Balaji Palanisamy, and Shamik Sural. Mitigating Frontrunning
Attacks in Ethereum. In Proceedings of the Fourth ACM International Symposium
on Blockchain and Secure Critical Infrastructure, 2022.

vbuterin. EIP 1559 FAQ, 2024-7-7. https://notes.ethereum.org/@vbuterin/eip-
1559-faq.

Ye Wang, Yan Chen, Haotian Wu, Liyi Zhou, Shuiguang Deng, and Roger Watten-
hofer. Cyclic Arbitrage in Decentralized Exchanges. Available at SSRN 3834535,
2022.

Benjamin Wesolowski. Efficient verifiable delay functions. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques. Springer,
2019.

Liyi Zhou, Kaihua Qin, and Arthur Gervais. A2MM: Mitigating Frontrunning,
Transaction Reordering and Consensus Instability in Decentralized Exchanges.
arXiv preprint arXiv:2106.07371, 2021.

Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V Le, and Arthur Gervais.
High-frequency trading on decentralized on-chain exchanges. In 2021 IEEE
Symposium on Security and Privacy (SP), 2021.

(32]

[33

~
S

[43

[44

A DEFINITIONS OF CRYPTOGRAPHIC
PRIMITIVES

DEFINITION A.1. (Verifiable Delay Function [13]) A verifiable
delay function, V is defined over three polynomial time algorithms.
(a) Setup(A, T) — pp = (ek,vk): This is a randomized algorithm
that takes a security parameter A and a desired puzzle difficulty T
and produces public parameters pp that consists of an evaluation key
ek and a verification key vk. We require Setup to be polynomial-time
in A. By convention, the public parameters specify an input space X
and an output space Y. We assume that X is efficiently sampleable.
Setup might need secret randomness, leading to a scheme requiring
a trusted setup. For meaningful security, the puzzle difficulty T is
restricted to be sub-exponentially sized in A. (b) Eval(ek, x) — (y, 7):
This algorithm takes an input x € X and produces an outputy € Y
and a (possibly empty) proof 7. Eval may use random bits to generate
the proof 7t but not to compute y. For all pp generated by Setup(A,T)
and all x € X , algorithm Eval(ek, x) must run in parallel time T
with poly(log(T), A) processors.

(c) Verify(vk, x, y,) — {“accept’, “reject’}: This is a deterministic
algorithm that takes an input, output and proof and outputs accept
or reject. The algorithm must run in total time polynomial inlog T
and A. Notice that Verify is much faster than Eval.

DEFINITION A.2. (Aggregate signature [15]) An aggregate signa-
ture scheme is defined over five polynomial time algorithms: (KeyGen,
Sign, Verify, Aggregate, AggregateVerification). Let G; and Gy be
two multiplicative cyclic groups of prime order p generated by g1
and gz, respectively. Let U be the universe of users. KeyGen(l’l) -
(xi,0;): Each user picks random x; < Z, and does v; < g;". The

user’s public key isv; € Gy and secret key is x; € Zp.

Sign(x;, M;) — oi: Each user i € U, given their secret key x; and
message of their choice M; computes hash h; «— H(M;) and signs
oj — hf" where g; € Gy and H : {0,1}* — Gy.

Verify(v;, Mj, 0;) — ftrue, false}: Given public key v; of user i, a mes-
sage M; and o;, compute hj < H(M;) and return true if e(cj, g2) =
e(hj,v;).

Aggregate(M, ..., My, 01, ..., 0n) — Oagg: Given each user i’s sig-
nature o; on a message of their choice M;, compute 0qgq < [}, 0i
wheren = |U|.

AggregateVerification(Uagg, M, ..., Mp, pky, ..
To verify aggregated signature 0444, given original messages M; along
with the respective signing users’ public keys v;, check if:

(1) All messages M; are distinct, and;
(2) For each user i € U, e(0j,g2) =
where h; — H(M;).

., e(hi,v;) holds true

B EIP 1559

The London hard fork to Ethereum introduces novel transaction
pricing mechanisms to improve the predictability of gas prices
even during dynamic periods [40]. Users are now required to pay a
base fee, which is a fee computed according to a formula that may
increase or decrease per block depending on network utilization.
Besides a base fee, a user is encouraged to pay a priority fee to
incentivize the validators to prioritize the user’s transactions. The
transactions that follow EIP-1559 are termed Type-2 transactions.
While Ethereum has adopted EIP-1559, it’s worth noting that other
prominent blockchain networks, like Binance Smart Chain, have
not yet implemented this standard. Despite the differing approaches,
Ethereum and Binance Smart Chain remain two of the most widely
used blockchain platforms. In our evaluation, we leverage these
platforms as references to evaluate the proposed framework and
demonstrate its applicability.

C UC FUNCTIONALITIES

C.1 Proof of Theorem 5.1

We assume the existence of eight tables: uTable, aTable, cTable,
sTable, idTable, scTable, bcTable and txpoolTable that store the
internal state of FrrsT and are accessible at any time by Fsetup
(Figure 8), y,¢ (Figure 3), and Fconstruct (Figure 4), which are time-
synchronized functionalities. The uTable is used to store user trans-
action specific information, aTable is used to store the signatures of
verifiers and users, cTable keeps track of VDF-specific challenges
issued to users, sTable stores the aggregated signatures of verifiers,
and idTable stores the identifiers and keys of users. The scTable
stores the deployed smart contract address and code, bcTable stores
the generated transactions, and txpoolTable stores the current trans-
action pool. We assume that Fetup’s t1 and ¢, time period verifi-
cation implicitly checks that ¢; and # are in the same unit of time
(i.e., both are in seconds, minutes, etc.).

We note that #y,. does not completely follow EIP-1559 because
Ethereum, like other real-world protocols and systems, is constantly
evolving, and as these systems change the ideal world would need
to be constantly updated to model the real world accurately. ¢

., pkn) — {true, false}:

Functionality Fsetup
Setup: On receiving tuple (setup, t1, 2, d, k, A, @, sid) from
dApp creator dAC, Fsetyp verifies that ¢ > to, if not return L.
Fsetup sets value of VDF delay to #; (s in ?:])éf), locally stores
variables d, k, A, « and initializes FIRST recommended fee
FIRST _FEE = 0.
KeyGen: Upon receiving a request (KeyGen, uid, sid) from
user u, Fsetup calls Fi; with (KeyGen,uid). When Fjg
returns (VerificationKey, uid, pky), Fsetup records the pair
(u, pky) in idTable and returns (VerificationKey, uid, pky) to
the user and S.
Sign: When Fgetyp receives a request (Sign,uid, m,sid)
from user u, it forwards the request to ¥z, who returns
{(Signature, uid, m, o), L}. If return value is not L, Fsetup
stores (m, o, pky, 1) in aTable, where pk;, is u’s verification
key created and stored during key generation. Fsetyp forwards
(Signature, uid, m, o) to u and S, else returns L to both.
Verify: When Fsetup receives (Verify, uid, m, o, pk’, sid)
from user u, it forwards the request to g, who re-
turns (Verified, uid,m, f), f € {0,1,¢}. Fsetup records
(m,o,pk’, f) in aTable and returns (Verified, uid, m, f) to
both user and S. Aggregate Signature: Upon receiving
(Aggregate, My, ... My, pk1, ..., pkn, oy, ...ovy,, sid) from C,
Fsetup checks if a tuple (cagg, M1 . .. My, pk1, ..., pk,,) already
exists in sTable, if so, it forwards (Aggregated, oagg) to C and
S. Else, it checks if n > |V|/2, if not then L is returned to
C and S. If previous check passed, Fsetup generates a string
Tagg < {0, 1}*, adds (cagg, M1, . .. M, pki, . .., pkn) to table
sTable, and forwards (Aggregated, gagg) to C and S.
Aggregate Verify: Upon receiving (aggVer, agg, M1, ... My,
pk1,...,pkn,sid) from an entity, Fsetup checks if tuple
(O’agg, My, ... My, pki,. .., pkp) exists in sTable. If yes, it for-
wards “accept”, else forward “reject” to the calling entity and
S.
Hash Interface: On receiving a message (hash, m, sid) from
a user U, Fsetup checks if tuple (m, h) exists in hashTable. If so,
it returns h and exits. If not then Feyp creates h < {0, l})‘,
adds (m, h) to hashTable, and returns h to u.
Calculate FIRST Fee: For every new block mined, Fsetup
sends getData() request to Fpc. Fsetup then checks priority
fee (f; where i € [1...n]) paid by txj ... tx, transactions in
the latest block that waited less than t» time, and calculates
the value of fapg = 1/n X X fi. FIRST_FEE = a X fgpq + (1 -
a) x FIRST FEE.
Return FIRST fee: On receiving request (returnFee, sid)
from user, Fsetup returns current value of FIRST_FEE.

Figure 8: Ideal functionality for system setup and signatures.

incorporates block size based on maximum fees per block and the
block hash rate, and is still general enough to model even non-EIP-
1559 blockchains similar to the real world FIRST protocol which is
applicable to multiple blockchain types.

To make the presentation clear, for each corruption case, through
a complete run of the protocol, we discuss the two worlds separately,

and show that Z’s view will be the same. Part 1: Let us first consider
the system and parameter setup described in Protocols 1, 2, and 3 .
Z initializes Fy, with (init, sid, P, H).
1) Case 0: All verifiers are honest

a) Real-world: In the real-world (Protocols 1, 2, 3), the dAC
generates a smart contract, deploys it on the BC, and initializes
FIRST_FEE calculation. The n verifiers will generate their keypairs,
(pki,ski),i € [1..n]. Z sees the SC and each verifier’s pk. dAC
will pick a T, and initialize the V class group with a negative
prime d. Note that since all verifiers are honest, Z does not get
to see their internal state, and secret keys. The view of Z will be
(SC,pp = (G, T,d), pku, . .., pkn, A, k, t1, t2, «, FIRST_FEE), where A
is the security parameter, and k is the multiplying factor for t,.

b) Ideal-world: S picks a security parameter A, (T, k) «s Z*,
negative prime d, vdf delay ¢, target mempool wait time f2, and
EWMA parameter value «, and sends (setup, t1, t2, d, k, @) to ﬂetup

a) Real world: Alice generates the (Mg, h,04) as in Case 0, and
sends (h, a4) to V. If V’ is the set of corrupted verifiers, Z’s view
will consist of V”’s inputs, i.e., ({ski}iev, h, 04)-

b) Ideal world: S generates an h «s {0, 1}* (note that verifiers
do not know the preimage). S then calls Fsetyp With (Sign, aid, h),
where aid is chosen at random. Fsetup returns (Signature, aid, h, 04;q).
S outputs (h, 0454)-

3) Case 2: Alice is corrupt and all verifiers are honest

a) Real world: Alice generates M4 and o4 over My’s digest. If
the signature does not verify, verifiers will eventually return L. If
Alice does not send anything, verifiers will do nothing. In any case,
Z’s view will be (Mg = (addra, foame, addrsc), h, o4).

b) Ideal world: S gets (h,04) from Z. S does not take any fur-
ther actions. Z’s view will be (M4 = (addra, faame, addrsc), h, o 4).
4) Case 3: Both, Alice and some verifiers are corrupt Note that
this cannot be locally handled by Z, as one might expect, since

to start the FIRST_FEE calculation. S calls %y, with (sid, deploy, SC.id, codeome verifiers are still honest.

(this step is implicit in all the following game hybrids). A sends
getData() to 7y, to get a copy of SC (also including all contents of
the blockchain). S makes 7 calls to Fsetup, (KeyGen, vid;), i € [1..n].
Fsetup returns (VerificationKey, vid;, pk;) to S. S generates a ran-
dom G such that G = Cl(d), and sets pp = (G,T,d). S call Re-
turn FIRST fee to get computed value of FIRST FEE. Thus the
view of Z is the same as the real-world. The view of Z will be
(SC,pp = (G, T,d), pk1,. .., pkn, A, k, t1, t2, ¢, FIRST _FEE).
2) Case 1: Some verifiers are corrupted

a) Real-world: Per our adversary model, less than half of the
verifiers can be corrupted. dAC deploys the SC on the blockchain,
initializes FIRST _FEE calculation, and all verifiers will generate their
keypairs. In this case, Z will have access to both pk and sk of a
corrupted verifier. Z will also have access to the corrupted verifiers’
Dj = U; = 0. Verifiers, corrupt or otherwise, have no role to play in
Protocol 3. dAC will deploy the SC on the blockchain as before, and
will generate G = CI(d), T. Let the set of corrupted verifiers be V’,
suchthat V’ ¢ V,and |V’| < |V|/2. The view of Z will be (SC, pp =
(G, T,d), {pki, ski, D;, Ui }icv, {pkj }je(V)a/L k, t1, t2, a, FIRST_FEE).

b) Ideal-world: As in Case 0, S simulates dAC’s role and receives

from Fetup (Init, T, d, FIRST_FEE). S calls . with (deploy, SC.id, code).

Z sends getData() to F,c to get a copy of SC (also including all
contents of the blockchain). For the honest verifiers, V — V’, S
creates pk «s {0, 1A Corrupt verifiers in V' C V are handled
by Z. Following the same procedure as in Case 0’s ideal world,
S generates a random G s.t., G = CI(d) and outputs (SC,pp =
(G, T, d), pki, ..., pkn, k). The view of Z, taking into account the ad-
ditional information Z has from corrupted verifiers will be (SC, pp =
(G, T,d), {pki,ski, Di, Ui}iev', {pkj}jev, A k. t1, t2, &, FIRST_FEE),
which is the same as the real-world.
Part 2: Now, let us consider Alice’s setup as given in Protocol 4.
1) Case 0: Alice and all verifiers are both honest

a) Real world: Alice generates My, hashes it, signs the digest,
h: 04 « Sign(h,skys), and sends (h, 04) to all members of V. Z’s
view will be @ (since all verifiers are honest, it does not have access
to their inputs).

b) Ideal world: S simulates Alice and will receive (req, aliceID, h, 04)

from Feonstruct- S does not take any further actions.
2) Case 1: Alice is honest, some verifiers are corrupt

a) Real world: Alice’s actions will be the same as in Case 2’s
real world. Z’s view will be (Mg, h, 4, {ski}icvy’), where V’ is the
set of corrupted verifiers.

b) Ideal world: S gets (h,04) from Z. S does not take any
further actions. Z’s view is same as real world.

Part 3: Now let us consider Alice, C, and verifiers’ interaction as
given in Protocol 6, 5, and 7. In the following cases, whenever some
verifiers (V’) are corrupt, |V’| < |V|/2, hence, a majority of verifiers
are still honest.

1) Case 0: Alice, C and all verifiers are honest

a) Real-world: On receiving a new VDF request from Alice, C
picks an [< P, all verifiers send (M;, oy;) to C. C will verify the
signatures, and will return the aggregate signature oagg to Alice,
who will then compute the VDF proof, (r,y). This proof is sent
to the V who will verify it before submitting their signatures to
the C for aggregation. The aggregated signature is sent to Alice
by the C who verifies it, and eventually submits x4 with the cur-
rent FIRST_FEE to the SC using (sid, invoke, tx4). Z’s view will
only be {pk;};ev initially, and it will see tx4 only when it hits the
transaction pool.

b) Ideal-world: S creates My, creates hash hy = H(My) and
calls Fsetup and gets o4. It then forwards (req, b4, 04) to Feonstruct’s
User request function and receives “success" and (req, aliceID, h4, 04).
S generates [on behalf of the C and sends (1, aliceID) to Fconstruct

using Coordinator request function and it receives (valid, [, ha, o4, pka).

For each V;, S signs the M; = (I, ha, Vi, blockcyyr) using Fsetyp and
blockcyrr is retrieved by calling Fy., i.e., using getBlockNum() and
being returned blockcyrr < [numyx /blockgsy]. S sends (Vi, M, opy,)
to Feonstruct using Coordinator response function call. S then
simulates the aggregation step of C by calling Fsetyp and receives
Oagg- S calls Feonstruct User response to send oagg to Alice. S
calls Fygf (start, I) function to start V delay. After V delay time,
S calls (output, [) function in F4f to generate the V proof which
returns (s, p). S then verifies the proof calling (verify, [, p,s) on
behalf of each V; and generates M and 0'\'/i in a straightforward
way. S aggregates all the signatures from V using Fsetup and gener-
ates oggg and forwarded to Alice using Fconstruct’s User response
function. S creates txq = (o’,, M’, pka, FIRST_FEE), where M’ =
(MA, Maggs Ma/lgg): Mellgg = (O'zlxgg’ M{’) Mr'z,kap s >ka,,): Magg =

(O’agg, My, ..., My, pky, ...pky,), and FIRST_FEE is retrieved by
sending (returnFee) request to Fsetup- S sends (sid, invoke, tx4) to
Fpe calling smart contract with SC.id. tx4 will get added to the
txpoolTable. While the tx4 is in the pending pool, the adversary
can try to delay tx4 from being mined by submitting transactions
with higher fees than tx4, while the adversary generates a valid V
proof. We point out that the adversary will need to submit enough
transactions with higher fees so that tx4 does not appear in any of
the blocks before adversary has a valid V proof, which would re-
quire an exorbitant amount of fees just like in the real world. When
tx4 eventually gets mined and added to a block, it will appear in
bcTable with the corresponding blockNum and if an adversary’s
valid transaction did not get mined before Alice’s then Alice did
not get frontrunned (this step is implicit in all the following game
hybrids). The code associated with SC.id checks that the oagg and
O';gg are signed by majority V, blockcyry signed in oagg is valid, and

that the hy s (My). If any of the checks fail, the smart contract
returns L, else outputs a valid transaction ¢x’.
2) Case 1: Alice, C are honest, some verifiers are corrupt

a) Real-world: Honest C generates [< PP. Corrupted verifiers
can either: 1) deliberately fail Alice’s signature verification (Step 4 of
Protocol 6), or 2) create a bogus signature over a possibly incorrect
message (Steps 5, 6 of Protocol 6). In both cases, the corrupt verifiers
in V” will not contribute towards gagg, since the C needs a majority
to abort the process and return L (Step 18 of Protocol 6). As long as
we have a honest majority in V, honest C will create and return oagg
to Alice, who will then evaluate the VDF and generate (7, y), and
send (7, y) to all members of V. Similarly, during the generation of
O'égg, C can ignore the inputs from V’. C sends (Magg, blockcurr)
to Alice. Honest Alice eventually outputs tx4. Z’s view will be
(l, oA, h, pkA, T, Y, XA, blockcur,,pp, 1, b2, a). 8

b) Ideal-world: S needs to simulate the actions of C and Alice
to Z. S creates My, creates hash hy = H(Myu) and calls Fsetup
and gets o4. It then forwards (req, h4,04) to Feonstruct and re-
ceives “success” and (req, alicelD, hy, 04). S picks an [« P, calls
Coordinator request function in Feonstruct, and sends [to Z. If
members of V’ return L for Alice’s signature verification or re-
turn bogus signatures from V’ (S can check these using Verify
function call in Feetup), S ignores them, since [V'| < [V|/2. S
then calls Fetup’s Aggregate Signature function with (Aggregate,
My, ..., My, pki,...,pkn, ov,,...,0v,) to aggregate all honest ma-
jority V’s signatures. Fsetyp returns oagg to S. S then calls Fqr to
generate V proof (s, p). S sends (I, p,s) to Z. Members of V/ will
send {0} };ev’ to S. S will simulate signatures for members of (V —
V’) in a straightforward way and calls ,.’s getBlockNum() func-
tion to get the blockcyrr < [numx [blockgsy] value. S generates
the o{igg similar to the previous oagg, by taking the majority signa-
tures. Since members of V/ will be in a minority, even if they return
1, it will not affect the creation of oggg. Finally S generates Alice’s
signature over M’, creates tx4 and submits it to #y,c. The view of Z,
who controls V' willbe (I, a4, ha, pka, p, s, txa, blockcyrr, pp, t1, t2, @)
3) Case 2: Alice, all verifiers are honest, C is corrupt

8We note that Z always has access to all the BC data: In the real world Z can query
a full node, run a light node, etc. In the ideal world, Z can send a getData() request
to Fpe. Without loss of generality, we say the Z’s view includes blockcy,r» because
a given blockcy,r is only tied to the current request and signifies the current block
number on the BC when the VDF request was received by the verifiers.

a) Real-world: On receiving VDF request from Alice, corrupt
C could either pick [«$ P which has already been assigned to
another user or an [¢ P, in this case the honest members of V
identifying the C as corrupt, will not generate an accept message
which can be aggregated by the C and the C cannot proceed. If the
C had picked [«s P correctly, on receiving the accept messages
and signatures from V, C can still choose to create Oagg that would
fail verification, in this case Alice’s checks would fail, identifying
the C as corrupt and she would not proceed further with the pro-
tocol. If the C had created oagg correctly, Alice would generate
the V proof and send it for verification to all V. Upon verifica-
tion, V send their replies to C for aggregation. Like the previous
aggregation step, if the C creates a corrupt message in this step,
Alice would be able to identify the C as malicious. If the C sends
Alice a valid a;gg, Alice eventually outputs tx4. Z’s view will be
(I, o, b, pka, m. y. txa, blockeurr. pp.ta. t2. & , ov;, Mi, oy, M) for
ie[1...[V]].

b) Ideal-world: S needs to simulate the actions of V and Al-
ice to Z. Z picks an [< P, and sends to S. S sends (, aliceID)
to Feonstruct and if it received (used,) then [has been used be-
fore and S would return L stopping the protocol. If Z picked
a valid I, S simulates the operations of the honest V. S sends
each V;’s accept message to Z who creates an oagg by calling
Fsetup's Aggregate Signature function call. S verifies oagg before
proceeding, else return L. This is sent to S who simulates Al-
ice’s operation of computing the VDF, before simulating the mem-
bers of V’s response accepting Alice’s VDF proof computation,
and forwarding (M, ... M;, pki,..., pkn, cr{,l ...0'{,") toZ.IfZ
does not aggregate the signatures from V correctly, and sends cor-
rupted/malformed o,,, to S, the signature verification by S would
fail. Finally S simulates Alice’s signature over tx4 and submits to
Fbe» 1.€., (sid, invoke, tx4). The view of Z, who controls C will be
(I,oa, b, pka, p, s, txa, blockeyrr, pp, t1, t2, @, ov,, M;, oy, M) for
ie[1...[V]].

4) Case 3: Alice is honest, C and some verifiers are corrupt

a) Real-world: On receiving VDF request from Alice, corrupt C
could pick I « P which has already been assigned to another user
or an ! ¢ P, in this case the honest majority of V — V/ would not
generate a signature for C identifying the C. The corrupt ¥V’ could
choose to generate accept messages and send them to C. The C can
create o,gg using the corrupt V’’s accept messages but this would
fail verification on when Alice receives oagg as |V’| < [V]/2.If the
C had picked I < P correctly, on receiving the accept messages
and signatures from V, C can still choose to create o,gg that would
fail verification, in this case Alice’s checks would fail, identifying
the C as corrupt and she would not proceed further with the proto-
col. If the C had created oagg correctly, Alice would generate the V
proof and send it for verification to all V. Upon verification, honest
members V-V, send their replies to C for aggregation. The dishon-
est members V' could either choose to not send a valid “accept’’
message for aggregation or choose to send a corrupt message for
aggregation. The C could choose to create a corrupt message by
aggregating less than |V|/2 messages or create a junk o,,. Like
the previous aggregation step, if the C creates a corrupt aggg in
this step, Alice would be able to identify the C as malicious be-
cause of the checks she does on receiving the messages from C.

If the C sends Alice a valid O';gg, Alice eventually outputs tx4.
Z’s view will be (I, 04, h, pka, 7, y, txa, blockcyrr, pp, t1, t2, @, ov;,
M;, oy, M) forie [1...[V]].

b) Ideal-world: S needs to simulate the actions of V — V' and
Alice to Z. Z picks an | < P, and sends to S. If [has been used
before, then S would just return L on behalf of honest V. Z can still
choose to create a o, With V” accept messages but when this is
sent to S it would fail verification since |V’| < |V|/2.If Z picked a
valid [, S simulates operations of the honest verifiers and sends each
Vi € {V-V"} accept message to Z who creates an g,gg. This is sent
to S who computes the V proof and sends to Z. S also send accept
messages from honest V to Z for C’s operations. Like the previous
aggregation step, Z could choose to create corrupt o}, ¢ but this
would fail verification when sent to S and the protocol would not
proceed further. To proceed further, Z has to create a valid o
with the accept messages from > |V|/2 members of V. Finally S sim-
ulates Alice’s signature over (aégg,MA,M{, e Mk, pk),
creates tx4 and submits to 73,.. The view of Z, who controls C and
V’ will be (I, 04, b, pka, p, s, txa, blockeyrr, pp, t1, t2, @, ov;, Mi, oy,
M) forie [1...[V]].

5) Case 4: Alice is corrupt, C and all verifiers are honest

a) Real-world: Alice sends a ‘V request to C and V. A corrupt
Alice could choose to create a corrupt o4 but this would fail ver-
ification at the C and V and the protocol would stop. To proceed
Alice has to compute valid (o4,h). C and V would proceed as
normal and return a o,gg to Alice. Alice could choose to send a
corrupt V for verification to V. Since verification would fail there
would be no o/, generated for Alice so she cannot proceed fur-
ther. If Alice computes a valid “V proof, C would return a o}, to
her and Alice eventually outputs tx4. In txy Alice could choose
to use a different M/, but the hash of M/, would not match the h
signed in oagg and would fail verification in the smart contract
which checks h matches My, and the [and h in o{igg are tied to
My. Alice can only pass smart contract verification if she keeps the
original My and valid Magg and M;gg in tx4. Z’s view will be
(L, oa, b, pka, 7, y, txa, blockcyrr, pp, t1, t2, @, ov;, M, ov/, M) for
ie[1...]V]].

b) Ideal-world: S needs to simulate the actions of V and C
to Z. Z picks a M4 and sends a request to C with hash h cor-
responding to M4. S simulates C and V by assigning [to h and
generating a gagg. Oagg is sent to Z who computes the V proof.
If Z decides to send a corrupted proof to S, then it would fail
verification and S would not generate a corresponding a;gg. The
only way for Z to proceed is to compute valid V' proof. Upon
receiving valid proof S verifies it and generates oég which is sent
to Z. Z now creates tx4 and submits to #3,.. The code associated
with SC.id verifies a;gg, the hash of M4 included in tx4 matches
(h,1,-) in Oagg> and the [in previous tuple is same as in ¢},,. The
code also checks for freshness using the blockcy,r value. If any of
these checks fail verification then the smart contract would not
execute in favor of Z and it would be identified as corrupt. Z’s
view will be (I, 04, h, pka, p, s, txa, blockeyrr, pp, t1, t2, @, ov,, Mj
oy, M) forie [1...]V]].

6) Case 5: Alice and some verifiers are corrupt, C is honest

a) Real-world: As in Case 4, if Alice sends corrupt o4 the C
would fail verification and not proceed further. If the o4 is valid, the

C picks valid [and sends to all V. The corrupt minority of V” could
choose to not send their signatures or send corrupt signatures which
the C can discard and generate a oagg from the honest majority
in V. Alice on receiving the oagg can choose to send an invalid V
proof which would not generate accept signatures from the honest
majority in V. V’ could choose to wrongly send accept signatures
to C but since |V’| < |V|/2, C will not generate a cr;gg. If Alice
computed a valid V proof then she will receive a ¢/,, from C and
Alice eventually outputs tx4. As described in Case 4, Alice can
only pass smart contract verification if she outputs a valid txs. Z’s
view will be (I, 04, h, pka, 7, y, txa, blockeyrr, pp, t1, t2, @, ov,, Mj,
oy, M) forie [1...[V]].

b) Ideal-world: S needs to simulate the actions of V — V’ and
C to Z. Z picks a M4 and sends a request to C with hash h corre-
sponding to Ma. If h or o4 are invalid then S would not generate [
and the protocol would stop. If valid request is received from Z, S
assigns [to h and sends to Z. If V’ controlled by Z send corrupt
signatures to S, it can just ignore those messages and output a
Oagg to Z by simulating the honest majority of V’s actions. If Z
decides to send corrupt proof to S, then it would fail verification
and S would not generate a corresponding a;gg. As in previous
step, corrupt V’ messages corresponding to V proof from Z can
be ignored by S. The only way for Z to proceed is to compute
valid V proof. Upon receiving valid proof S verifies it and gener-
ates 07,4, which is sent to Z. Z now creates tx4 and submits to
Fbe- As described in Case 4, Z can only pass smart contract veri-
fication if tx4 contains valid signatures and Mu. Z’s view will be
(I.oa. b, pka. p. s, txa, blockeurr, pp. t1, t2, @, oy, Mi, oy, M) for
ie[1...[V]].

7) Case 6: Alice, C are corrupt, all verifiers are honest

a) Real-world: If Alice sends corrupt o4 to the C and V, or
if Alice sends a valid request but C chose a corrupt [similar to
Case 2, the V will not send accept signatures to C since the request
or [will not pass verification. The C can create corrupt oagg but
this would fail verification eventually at the smart contract. If the
o4 is valid and the C picks valid [, the V will reply with accept
messages so C can generate a valid 0,gg. Alice on receiving the oagg
can choose to send an invalid V proof which would not generate
accept signatures from the V. Like the previous stage, the C can
create corrupt a;gg but this would fail verification eventually at
the smart contract. If Alice computed a valid V proof, the C would
receive accept signatures from the V and C can compute a valid
a;gg. Alice eventually outputs tx4. As described in Case 4, Alice
can only pass smart contract verification if she outputs a valid tx4.
Z’s view will be (I, o4, h, pka, 7, y, txa, blockcyrr, pp, t1, to, @, oy,
M;, oy, M) forie [1...]V]].

b) Ideal-world: S needs to simulate the actions of Vto Z. Z
picks a My and sends to S, the hash h corresponding to My, oa,
and . If h or o4 are invalid then S would not generate V signatures
for Z. Z can decide to proceed with the protocol by generating
a corrupt oagg but this would fail verification in the code of the
SC.id smart contract. If valid request and [is received from Z, S
sends V signatures to Z and Z can generate Oagg- If Z decides
to send corrupt proof to S, then it would fail verification and S
would not generate corresponding accept signatures from V to send
to Z. Like the previous stage, the Z can create corrupt a;gg but

this would fail verification eventually at the SC.id smart contract.
The only way for Z to proceed is to compute valid V proof. Upon
receiving valid proof S verifies it and generates V signatures which
are forwarded to Z. Z generates a valid 074, creates tx4, and
submits to Fp.. As described in Case 4, Z can only pass smart
contract verification if tx4 contains valid signatures and M4. Z’s
view will be (I, o4, b, pka, p, s, txa, blockcurr, pp, t1, t2, @, ov,, M,
oy, M) forie [1...[V[].

8) Case 7: Alice, C and some verifiers are corrupt

a) Real-world: If Alice sends corrupt o4 to the C and V, or
if Alice sends a valid request but C chose a corrupt [similar to
Case 2, the honest majority V — V” will not send accept signatures
to C since the request or I will not pass verification. The C can
create corrupt oagg but this would fail verification eventually at
the smart contract. If the o4 is valid and the C picks valid /, the
honest majority V — V’ will reply with accept messages so C can
generate a valid og¢. Alice on receiving the o,gg can choose to send
an invalid V proof which would not generate accept signatures
from the honest majority V — V. Like the previous stage, the C
can create corrupt cr;gg but this would fail verification eventually at
the smart contract. If Alice computed a valid V proof, the C would
receive accept signatures from the honest majority V-V’ and C can
compute a valid O'égg. Alice eventually outputs tx4. As described in
Case 4, Alice can only pass smart contract verification if she outputs
avalid tx4. Z’s view will be (I, 04, h, pka, 7, y, txa, blockcyrr, pp,
t1, t2, a,0v;, M;, ovy, Ml.’) forie[1...]V]].

b) Ideal-world: S needs to simulate the actions of honest major-
ity V-V’ to Z. As in Case 6, S will not send any accept messages
to Z when simulating the honest verifiers if Z sends corrupt o4
and h on behalf of Alice and corrupt ! on behalf of the C. Z will
not be able to create valid oagg and o, since the honest majority
of verifiers will be simulated by S. The only way for Z to proceed
is to submit valid h, 04 and I to S and compute a valid oagg and V
proof. Upon receiving valid proof S verifies it and generates V -V’
signatures which are forwarded to Z. Z generates a valid o7,
creates tx4, and submits to Fy,.. As discussed in Case 4, Z can out-
put a corrupt tx4 but the verification checks in the smart contract
code will fail. Z’s view will be (1, a4, h, pka, p, s, txa, blockcyrr, pp,
t1, ta, @, ov,, Mi, oy, M) forie [1...[V]].

Let TX 4 represent the set of A’s transactions, TX 7 represent
the set of Z’s transactions, TXg represent the set of S’s trans-
actions, and let tx4 represent Alice’s transaction in the pending
pool, i.e., txpoolTable, respectively. Let the time elapsed since tx4
entered the txpoolTable be denoted by Tg, the maximum miner fee
allowed per block by the blockchain system be blockMaxFee, let t;
be the time taken for computing a given VDF, and let # (A) denote
the power set of set A. Then the advantage of A in winning the
FIRST game against Alice, i.e., Alice’s tx4 getting frontrunned is
given by the following inequality:

AdV g st (D) < Pr[(TXB = min(1X));
X e P((TX 7 UTX) U (TXg \ {txa})))/\
(V tx € TXp, Z tx.txfee < blockMaXFee)

A (Tg > tl)].

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Ethereum and DeFi
	2.2 Cryptographic Preliminaries

	3 System and Threat Model
	3.1 System Model
	3.2 Threat Model and Assumptions

	4 The FIRST Framework
	4.1 Overview of FIRST
	4.2 Construction of FIRST

	5 Security Analysis of FIRST
	5.1 Informal Security Analysis
	5.2 Formal Security Analysis

	6 Experimental Results and Analyses
	6.1 Data Gathering
	6.2 Extension to non-EIP-1559 chain
	6.3 Aggregate Signature Implementation
	6.4 Scalability of VDF
	6.5 Analyses and Discussion

	7 Design Choices, Compatibility, Use Cases and Limitations
	8 Related Work
	9 Conclusion
	10 Acknowledgments
	References
	A Definitions of Cryptographic Primitives
	B EIP 1559
	C UC functionalities
	C.1 Proof of Theorem 5.1

